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Summary and thesis outline 

Drought is the most important stress factor for plants, where abscisic acid (ABA) 

plays a crucial role to cope with the stress. It is well reported that drought stress 

increases 9-cis-epoxycarotenoid dioxygenase (NCED) gene expression, which it is an 

important ABA biosynthetic pathway gene, triggering higher ABA levels in plant 

subjected to drought stress. Thus, it has been suggested that ABA might be involved on 

anthocyanin biosynthesis under drought stress. Anthocyanins are plant secondary 

metabolites, which may help to plants to counteract oxidative damage generated by 

drought stress as antioxidant; however, there is no evidence to sustain such hypothesis.  

Aristotelia chilensis (Mol.), also known as Maqui, is an endemic berry in Chile 

belonging to the Elaeocarpaceae family. A. chilensis is considered as a pioneer species, 

colonizing and growing on stressed and disturbed environments, thus being an 

interesting model for studying abiotic stress resistance mechanism.  

Therefore, the following hypothesis was proposed: “Higher ABA levels produced by 

induction of nine-cis-epoxycarotenoid dioxygenase (NCED) gene expression triggers 

anthocyanin biosynthesis due to the induction of UDP-glucose: flavonoid 3-O-

glucosyltransferase (UFGT) gene expression in Aristotelia chilensis (Mol.) plants under 

drought stress”.  

The aim of this work was to study the role of abscisic acid on the regulation of 

anthocyanin biosynthesis in Aristotelia chilensis (Mol.) under drought stress.  
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First, we described the importance of ABA and anthocyanin biosynthesis in plants 

subjected to drought stress, and their relationship throughout the interaction of ABA and 

a microRNA (microRNA156) for anthocyanin biosynthesis. Here, we proposed a 

molecular model where ABA triggers anthocyanin biosynthesis in drought stressed 

plants. 

A drought stress experiment allows us to determine that A. chilensis plants were 

subjected to severe stress at day 20 after water restriction. At the same time with this 

severe drought stress coincided with the highest ABA and anthocyanin levels in fully-

expanded leaves.  

Thus, to determine the role of ABA on anthocyanin biosynthesis in drought 

stressed Aristotelia chilensis plants, we applied fluridone (ABA inhibitor biosynthesis), 

and subsequent ABA at day 20 of water restriction (when plants were subjected to 

severe drought stress). In this experiment, we found that ABA regulates anthocyanin 

biosynthesis through the AcUFGT expression in drought stressed plants.  

In the last chapter, general discussion has been developed, where the main 

conclusions were that 1) a negative effects of drought stress on plant growth were 

ameliorated by ABA and anthocyanin biosynthesis that importantly contributed to 

drought stress tolerance. 

2) That fluridone was an effective ABA inhibitor in A. chilensis stressed plant, 

and also that ABA application was able to recover both endogenous ABA 

concentrations in fluridone treated plants as well as increase total anthocyanin and also 

inducing a different anthocyanin profile.  

Finally, this thesis leads to the first step in the induction mechanism of 

anthocyanin biosynthesis under drought stress. However, it will be necessary in future 
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studies to further explore the molecular mechanisms for ABA downstream processes. 

These processes will allow us a target task for breeders to manage and modify 

anthocyanin concentrations in plant organs and consequently increase the plant 

tolerance to drought stress. 
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1.1 Introduction 

Currently, about 40% of Earth’s surface corresponds to land under drought stress 

(United Nations, 2014). The lack of water availability (drought stress) is considered the 

most important stress factor for plants, due to the fact that it is involved in important 

physiological processes (Tadeo and Gómez-Cadenas, 2008). Drought stress can limit 

photosynthesis and plant growth. Plants have developed complex mechanisms for 

preventing water loss and counteracting oxidative stress due to drought stress. Abscisic 

acid (ABA) synthesis, non-enzymatic compounds, and stomatal closure are some 

responses to drought stress in plants (Moreno, 2009; Zhang et al. 2001). It has been 

reported that drought stress can modify anthocyanin concentration as well as the 

anthocyanin profile, promoting the synthesis of tri-hydroxylated anthocyanins (Ojeda et 

al. 2002; Castellarin et al. 2007; Bucchetti et al. 2011). Thus, Castellarin et al. (2007) 

reported that tri-hydroxylated anthocyanins such as delphinidin and malvidin are better 

compared to di-hydroxylated anthocyanin; mitigating oxidative stress due to antioxidant 

power, which depends on the numbers of hydroxyl groups in anthocyanin chemical 

structure. Therefore, these tri-hydroxylated anthocyanins increase drought stress 

tolerance. It is well know that drought stress induces anthocyanin level accumulation 

due to up-regulation of anthocyanin pathway key genes such as dihydroflavonol 4-

reductase (DFR), UDP-glucose:flavonoid 3-O-glucosyl transferase (UFGT) and 

transcription factors such as Myeloblastosis A1 (MybA1) and Myeloblastosis 5A 

(Myb5A) (André et al. 2009; Borsani et al. 2010; Castellarin et al. 2007; Santesteban et 

al. 2011). However, the induction mechanism of this higher anthocyanin concentration 

is still unclear (Ferrandino and Lovisolo, 2013: Petrussa et al. 2013; Murcia et al. 2017). 

On the other hand, drought stress increases 9-cis-epoxycarotenoid dioxygenase (NCED) 

gene expression, which encodes a key enzyme in ABA biosynthesis pathway (Tuteja et 
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al. 2007; Trivedi et al. 2016). Thus, higher NCED expression increases ABA 

concentration in the xylem sap and plant organs such as fruits and leaves of different 

species (Luchi et al. 2001; Zhang et al. 2009). According to Peuke (2016), ABA 

concentration in leaves is more variable than in other plant organs. Even more, there is 

evidence that in young leaves, ABA had higher levels than in fully-expanded leaves of 

Coleus blumei and Xanthium strumarium (Raschke and Zeevaart, 1976; LaMotte et al. 

2002); on the contrary, in Pisum sativum, Triticum aestivum and Arabidopsis thaliana, 

fully-expanded leaves showed higher ABA levels compared with young leaves under 

drought stress (Zdunek and Lips, 2001; Zhang et al. 2012; Chen et al. 2013). Therefore, 

plant organs accumulate endogenous ABA in different ways in response to drought 

stress. Some authors have suggested that higher anthocyanin concentration under 

drought stress could be due to ABA concentration increase (Jiang and Joyce; 2003; 

Deluc et al. 2009; Bucchetti et al. 2011). For example, Nagira et al. (2006) showed that 

osmotic stress in Torenia fournieri plants elevated endogenous ABA levels before 

anthocyanin biosynthesis induction. Therefore, they suggested that changes in the 

endogenous ABA concentration might play an important role in the anthocyanin 

biosynthesis induction. Thus, González-Villagra et al. (2017) have proposed a model, 

where they explain how ABA could be involved in anthocyanin biosynthesis through 

the regulation of a microRNA (156), which increases the expression of anthocyanin 

biosynthesis genes. However, other authors have suggested that different factors might 

have a higher influence on anthocyanin concentrations than endogenous ABA (Gagné et 

al. 2011; Kondo et al. 2014). Antolín et al. (2006) reported that ABA and anthocyanin 

concentration (based on fresh weight) increased in Vitis vinifera cv. Tempranillo fruits 

under drought stress. However, there was no difference in anthocyanin content on a 

berry basis, between drought stress and well watered treatments. Therefore, whether 
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ABA is responsible for increasing anthocyanin concentration under drought stress is 

still controversial. Besides, there are few reports regarding the changes on endogenous 

ABA levels that link with the anthocyanin biosynthesis induction. Understanding the 

inductor mechanism responsible of higher anthocyanin concentration under drought 

stress might represent a powerful tool to manage and modify anthocyanin concentration 

in plant organs. Therefore, it is greatly important to know whether ABA is responsible 

for the increase of anthocyanin biosynthesis under drought stress. 

Maqui (Aristotelia chilensis Mol.) is an endemic berry in Chile belonging to 

Elaeocarpaceae family. It is an evergreen tree, distributed from Illapel (Coquimbo 

Region) to Chiloé (Los Lagos Region) (Hoffman et al., 2005). The A. chilensis is a 

pioneer species, colonizing and growing on stressed and disturbed environments, being 

an interesting model for studying its abiotic stress resistance mechanism (Fredes et al. 

2014). On the other hand, this endemic species has been of a great interest for farmers 

and consumers for its antioxidant action due to high anthocyanin concentration. 

Currently, commercial crops are being established, forcing the development of morpho-

phenological, physiological, and genetic diversity studies to establish agronomic 

parameters, and to develop selection and breeding strategies (Fredes et al. 2014; Vogel 

et al. 2014). Therefore, A. chilensis is an adequate model to study ABA and anthocyanin 

accumulation. 

The aim of this work was to study the role of abscisic acid on anthocyanin biosynthesis 

in drought stressed Aristotelia chilensis plants, evaluating the induction of genes related 

to their biosynthesis. 
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1.2 Hypotheses 

Currently, it is known that drought stress increases anthocyanin concentration due to 

anthocyanin pathway key gene up-regulation. However, the inducing mechanism of this 

higher anthocyanin concentration is unknown. On the other hand, it has been suggested 

that abscisic acid could be responsible for anthocyanin biosynthesis genes regulation 

under drought stress. However, whether abscisic acid is responsible for increasing 

anthocyanin concentration under drought stress is still controversial.  

 

Therefore, the following hypothesis is proposed: 

Higher ABA levels produced by induction of nine-cis-epoxycarotenoid dioxygenase 

(NCED) gene triggers anthocyanin biosynthesis due to the induction of UDP-glucose: 

flavonoid 3-O-glucosyltransferase (UFGT) gene in Aristotelia chilensis (Mol.) plants 

under drought stress.  

 

1.3 General objective: 

To study the role of abscisic acid on the regulation of anthocyanin biosynthesis in 

Aristotelia chilensis (Mol.) under drought stress.  
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1.4 Specific objectives: 

1. To evaluate the effect of drought stress on endogenous abscisic acid, total and profile 

of anthocyanin in Aristotelia chilensis (Mol.) plants. 

2. To evaluate expression changes of nine-cis-epoxycarotenoid dioxygenase (NCED) 

and UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) genes in Aristotelia 

chilensis (Mol.) plants under drought stress. 

3. To compare the effect of an endogenous abscisic acid inhibitor and subsequent 

exogenous abscisic acid applications on total anthocyanin in Aristotelia chilensis (Mol.) 

plants under drought stress. 
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Abstract  

Drought stress is the main cause of agricultural crop loss in the world. However, plants 

have developed mechanisms that allow them to tolerate drought stress. At cellular level, 

drought stress induces changes in metabolite accumulation, including increases in 

anthocyanin levels due to upregulation of the anthocyanin biosynthetic pathway. Recent 

studies suggest that the higher anthocyanin content observed under drought stress could 

be a consequence of a raise in the abscisic acid (ABA) concentration. This plant 

hormone crosses the plasma membrane by specific transporters, and it is recognized at 

the cytosolic level by receptors known as pyrabactin resistance (PYR)/regulatory 

component of ABA receptors (PYR/RCARs) that regulate downstream components. In 

this review we discuss the hypothesis regarding the involvement of ABA in the 

regulation of microRNA 156 (miRNA156), which is upregulated as part of dehydration 

stress responsiveness in different species. The miRNA156 upregulation produces a 

greater level of anthocyanin gene expression, forming the multienzyme complex that 

will synthesize an increased level of anthocyanins at the cytosolic face of the rough 

endoplasmic reticulum (RER). After synthesis, anthocyanins are transported from the 

RER to the vacuole by two possible models of transport: 1) Membrane Vesicle-mediate 

Transport (MVT), or 2) Membrane Transporter-mediated Transport (MTT). Thus, the 

aim was to analyze the recent findings on synthesis, transport and the possible 

mechanism by which ABA could increase anthocyanin synthesis under drought stress 

potentially throughout microRNA 156 (miRNA156). 

Keywords: anthocyanin transporter · phytohormone · microRNA156 · pre-vacuolar 

compartments 
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2.1 Introduction 

Water is the most important factor for plant growth, since it is a major 

component of the plant body and it is involved in fundamental physiological processes. 

Thus, a limitation in water availability (drought) is a major stress factor for plant growth 

and development, and therefore reproductive yield (Levitt 1980; Tadeo and Gómez-

Cadenas 2008; Moreno 2009). According to a recent United Nations’ World Water 

Development Report (2014), a third of the world’s population lives in countries or 

regions with significant drought stress, and it is predicted that by 2025 this will increase 

by up to two thirds. It is estimated that drought stress is the main cause of agricultural 

crop loss in the world as drought can reduce the average expected crop yields by more 

than 50% (Boyer 1982; Pessarakli 2010). Plants have developed physiological and 

molecular mechanisms that allow them to tolerate drought stress or slow the rate of its 

impact on plant physiology. The most important physiological mechanism is the 

regulation of stomatal closure. Stomatal closure in response to drought stress can limit 

its severity by preventing water loss through these specialized structures (Zhang et al. 

2001). At the cellular and molecular levels, drought stress generates an increase in the 

expression of genes that encode enzymes for the production of secondary metabolites 

such as osmolytes, proteins with protective functions, and enzymatic and non-enzymatic 

antioxidants, and thus accumulation of these gene products at the cytoplasmic level 

(Taiz et al. 2016).  

Drought stress also induces changes in the accumulation of another group of 

secondary metabolites, anthocyanins, which are responsible for the red, purple, and blue 

colors of plant tissues (Taiz and Zeiger 2002; Schwinn et al. 2016), mostly fruits and 

leaves (Roby et al. 2004; Bucchetti et al. 2011; Zhang et al. 2017). Anthocyanins also 

accumulate in response to biotic and other abiotic stresses, and therefore are thought to 
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play a key role in the survival of stressed plants (Steyn et al. 2002). Under drought 

stress, anthocyanins have a role in osmotic regulation, contributing to the maintenance 

of cell turgor pressure and thus tolerance to a water deficit (Chalker-Scott 1999). 

However, anthocyanins may also have other regulatory roles in the event of a drought 

stress (Hughes et al. 2013). Anthocyanins are synthesized in cytoplasm by a 

multienzyme complex, associated with the cytoplasmic face of the rough endoplasmic 

reticulum (RER), via the phenylpropanoid pathway, and stored in the vacuole, but their 

cellular transport is not well known (Winkel-Shirley 1999; Winkel-Shirley 2004; Sun et 

al. 2012ab). Under drought stress, the accumulation of anthocyanins appears to be under 

complex regulatory control at both spatial and temporal levels and thus the inductive 

mechanisms of anthocyanin synthesis remains unresolved (Castellarin et al. 2007a; Ollé 

et al. 2011). Abscisic acid (ABA) is a plant hormone that regulates plant growth, 

development such as seed dormancy, floral induction, and is involved in abiotic stress 

responses such as drought stress, salinity and cold (Finkelstein 2013; Li et al. 2017a). 

Under these abiotic stresses, ABA regulates the activation of antioxidant enzymes and 

also reduces stomatal aperture (Choudhary et al. 2011; Guajardo et al. 2016). The aim 

of this review was to analyze, summarize and evolve the recent findings on synthesis, 

transport and the possible mechanism by which ABA interacts, directly or indirectly, 

with anthocyanin biosynthesis and, potentially, microRNA 156 (miRNA156) under 

drought stress. 

 

2.2 Overview of biosynthesis and transport of anthocyanins 

Anthocyanins belong to a large family of secondary metabolites known as 

flavonoids. This family consists of compounds such as flavones, flavonols and 

isoflavones. The basic anthocyanin structure consists of two aromatic rings bound by a 
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three-carbon bridge, and attached groups, such as hydroxyl and methoxy groups, as well 

as adducts, which generate the various kinds of anthocyanins (Winkel-Shirley 2006; 

Boudet 2007). Anthocyanins are synthesized via the phenylpropanoid pathway (Winkel-

Shirley 1999) and stored in the vacuole (Sun et al. 2012a; Li et al. 2017b), but their 

cellular transport is not well known. The phenylpropanoid pathway of anthocyanin 

synthesis has been well characterized (Fig. 1), and there are several reviews that 

describe it in detail (Jaakola et al. 2002; Winkel-Shirley 2006; Vogt 2010; Teixeira et 

al. 2013). Anthocyanin synthesis occurs mainly in epidermal cells of different organs 

such as stem, leaves, flowers, and fruits (Jackson et al. 1992; Huits et al. 1994; Bae and 

Kim 2006; Ahmed et al. 2009; Gould et al. 2009). Although some authors (Pelletier and 

Shirley 1996; Buer and Muday 2004; Buer et al 2007) have indicated that roots and 

tissues grown in the dark are largely incapable of synthesizing significant levels of 

anthocyanins because the biosynthetic enzymes are all light-dependent, other authors 

(Buer et al. 2007; Neufeld et al. 2011) have demonstrated that in Galax urceolata and 

Ipomoea batatas root tissues anthocyanin biosynthesis can occur without light. 

Presently, this phenomenon remains largely unexplained. At the cellular level, the 

cytosolic face of the RER is the primary place where synthesis of these compounds 

occurs via the action of a multienzyme complex (Winkel-Shirley 2004; Tian et al. 

2008). However, some of the individual enzymes of the anthocyanin biosynthetic 

pathway have also been found to be associated with the membranes of various other 

organelles such as vacuoles, plastids, and also inside the cell nucleus (Winkel-Shirley 

2004; Saslowsky et al. 2005; Tian et al. 2008; Toda et al. 2012). 
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Figure 1. General phenylpropanoid pathway. PAL, phenylalanine ammonia-lyase; 

C4H, cinnamic acid 4-hydroxylase; 4CL, 4-coumarate:CoA ligase; CHS, chalcone 

synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; F3’H, flavonoid 3’-

hydroxylase; F3’5’H, flavonoid 3’,5’-hydroxylase; DFR, dihydroflavonol reductase; 

ANS, anthocyanidin synthase; MybA1, myeloblastosis A1; UFGT, UDP 

glucose:flavonoid 3-O-glucosyltransferase; MT, methyltransferase. 
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As mentioned above, anthocyanins are primarily synthesized on the cytosolic 

face of the RER and subsequently stored in the vacuole (Sun et al. 2012a). However, it 

is not fully understood how anthocyanins are transported from the RER to the vacuole. 

Accumulation of newly biosynthesized anthocyanins in the vacuole is required to 

prevent their oxidation and thus maintain functional anthocyanins for a future action 

(Marrs et al. 1995; Verweij et al. 2008). In the vacuole, anthocyanins are stored inside 

bodies or structures of different sizes without defining membranes, known as 

anthocyanic vacuolar inclusions (AVIs) (Zhao and Dixon 2010; Zhang et al. 2006). For 

the anthocyanin transport from RER to vacuole, two possible models have been 

proposed: 1) membrane vesicle-mediated transport, and 2) membrane transporter-

mediated transport (Grotewold and Davies 2008; Fig. 2).  

The membrane vesicle-mediated transport (MVT) is a transport by vesicles, or 

structures having membranes, called pre-vacuolar compartments (PVCs), travelling 

from the RER to the tonoplast (Gómez et al. 2011). The transport of anthocyanins by 

PVCs has been described in Vitis vinifera (Conn et al. 2003), Arabidopsis thaliana 

(Poustka et al. 2007), and Sorghum bicolor (Snyder and Nicholson 1990). Anthocyanins 

have been shown to accumulate in the RER lumen (Poustka et al. 2007); therefore, these 

PVC structures could be originated within the RER lumen. PVCs can enter the vacuole 

by either endocytosis (Gómez et al. 2011) or directly into the vacuole by 

microautophagy as the vacuolar membrane engulfs anthocyanins (Chanoca et al. 2015). 

However, more research is needed to fully describe this input mechanism. 

For the membrane transporter-mediated transport (MTT) (Fig. 2) model, two 

major transporter families have been suggested as being involved in this transport 

mechanism: the multidrug resistance-associated protein type ATP-binding cassette 
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(MRP-type ABC) and multidrug and toxic compound extrusion (MATE) (Zhao and 

Dixon 2010). The ABC transporters are proteins that can transport substrates across the 

membrane using energy from ATP hydrolysis (Jones and George 2002). To date only 

two MRP-type ABC transporters have been identified in anthocyanin transport, 

ZmMrp3 in Z. mays and VvMrp1 in V. vinifera (Goodman et al. 2004; Francisco et al. 

2013). The second major anthocyanin transporter family, MATE (Yazaki 2005), is the 

family of multidrug efflux transporters involved in the detoxification of xenobiotics, 

organic acids, and secondary metabolites. Activity of these transporters depends on a H+ 

gradient across the tonoplast generated by V-ATPase and H+-pyrophosphatase (Klein et 

al. 1996). Gómez et al. (2009) and Zhao et al. (2011) identified genes encoding MATE 

transporters located in the tonoplast: anthoMATE1 and anthoMATE3 genes in V. 

vinifera and MtMATE2 in M. truncalata. Through observations obtained with confocal 

microscopy, Gómez et al. (2009) and Zhao et al. (2011) suggested that small vesicles 

carrying anthocyanins were associated with MATE transporters. 



Chapter 2: Evaluating the involvement and interaction of abscisic acid and miRNA156 

in the induction of anthocyanin biosynthesis in drought-stressed plants 

______________________________________________________________________ 

_____________________________________________________________________________ 
16 

 

 

Figure 2. Anthocyanin transport from RER to Vacuole. There are two possible models 

of anthocyanin transport: membrane vesicle-mediate transport (MVT) and membrane 

transporter-mediated transport (MTT). The MVT refers to transport by vesicles or 

structures filled with anthocyanins inside that have a membrane, these structures are 

commonly named pre-vacuolar compartments (PVCs). The MTT refers to transport by 

transporters located at the tonoplast. Two major transporter families have been proposed 

as being involved in this transport mechanism: the multidrug resistance-associated 

protein type ATP-binding cassette (MRP-type ABC), and the multidrug and toxic 

compound extrusion (MATE) protein family.  

 

2.3 Anthocyanin accumulation under drought stress 

The accumulation of anthocyanin under drought stress has been studied in many 

plant species and different organs (Table 1). For example, Kennedy et al. (2002) 
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reported that the anthocyanin concentration, based on fresh weight, of drought-stressed 

wine grapes was significantly higher (>50%) than well-watered wine grapes (Table 1). 

Similar results were also reported in V. vinifera by Esteban et al. (2001). However, 

drought stress not only increases anthocyanin accumulation, but also inhibits plant 

growth. For example, in drought-stressed A. thaliana leaves, which had reduced size 

and biomass growth, anthocyanin concentrations were higher than in well-watered 

leaves (Jung 2004). Thus, is there a greater anthocyanin accumulation under drought 

stress because of a de novo anthocyanin synthesis leading to higher anthocyanin 

concentrations or because of the drought stress-mediated inhibition of organ growth? 

Castellarin et al. (2007a) and Ferrandino and Lovisolo (2013) have concluded that a 

higher accumulation of anthocyanins under drought stress is not due to a growth 

inhibition of studied organs, but rather a true upregulation of anthocyanin biosynthesis.  

 

Table 1. Effects of drought stress on anthocyanin concentrations of different organs and 

in different species. 

 

Species Organs Conditions  Effects References 

Vitis vinifera  

cv. Cabernet Franc 

Fruits Field conditions. Water was withheld 

(midday leaf water potential was -1.43 MPa 

at onset of ripening) from anthesis until the 

onset of ripening.  

Increased 

concentration 

Matthews 

and 

Anderson 

1988. 

Pisum sativum cv. 

Citrina 

Leaves Greenhouse conditions. Nutrient solution 

with 10% polyethylene glycol. Seedlings, 

10 days old, stress applied for 7 d.  

Increased 

concentration 

Alexieva et 

al. 2001. 

Withania somnifera Leaves Greenhouse conditions. Seedlings, 7 days 

old, were subjected to drought stress by 

withholding water.  

Increased 

concentration 

Sanchita et 

al. 2015. 

Vitis vinifera 

cv. Cabernet 

Sauvignon 

Fruits Field conditions. Commercial vineyard. 

The irrigation was not applied until midday, 

leaf water potential was -1.6 MPa 

Increased 

anthocyanin 

concentration  

Kennedy et 

al. 2002. 

Vitis vinifera 

cv. Cabernet 

Sauvignon 

Fruits Field conditions, the irrigation was not 

applied until midday, leaf water potential 

was -1.6 MPa 

Increased 

concentration 

Roby et al. 

2004. 

Cicer arietinum Leaves Field conditions, plants were 20 days old, 

drought stress was applied by withholding 

water. 

Increased 

concentration 

Kalefetoglu 

and 

Ekmekci 
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2009. 

Vitis vinifera  

cv. Cabernet 

Sauvignon 

Fruits Field conditions, water was applied when 

stem water potential reached -1.2 MPa, then 

irrigation was applied weekly for both 

treatments. Plants were 20 years old.  

Increased 

concentrations 

Deluc et al. 

2009. 

Vitis vinifera cv. 

Merlot 

Fruits Field conditions, treatments were applied 

from the onset of ripening to harvest. Water 

potential was kept within the interval -0.8 

to -1.4 MPa for stress treatments 

Increased 

concentration 

Bucchetti et 

al. 2011 

Vitis vinifera cv. 

Tempranillo 

Fruits Field conditions, treatments were applied 

from the onset of ripening to harvest. Water 

potential was kept until reaching -0.8 MPa 

for stress treatments 

Increased 

concentration 

Santesteban 

et al. 2011 

  

However, the mechanism for induction of anthocyanin biosynthesis under drought stress 

remains largely unclear. Some molecular studies have facilitated the elucidation of this 

mechanism (Castellarin et al. 2007b; André et al. 2009). According to these studies, 

drought stress induces changes in the expression of several key genes involved in the 

anthocyanin biosynthetic pathway (Castellarin et al. 2007b; André et al. 2009; Giordano 

et al. 2016). In particular, drought stress induces an upregulation of expression of CHS, 

Flavanone 3- hydroxylase (F3H), Flavonoid 3`,5`-hydroxylase (F3`5`H), DFR, UDP-

glucose:flavonoid 3-O-glucosyl transferase (UFGT), O-methyl-transferase (OMT), as 

well as transcription factors, such as Myeloblastosis A (MYBA), Myeloblastosis 5a 

(MYB5a), and MYB112 (Nagabhushana and Reddy 2004; Castellarin et al. 2007a, b; 

André et al. 2009; Borsani et al. 2010; Martínez-Lüscher et al. 2014; Berdeja et al. 

2015; Lotkowska et al. 2015). The upregulation of the expression of these structural and 

regulatory genes involved in the phenylpropanoid pathway results in an increased 

number of enzymes available for catalysis of the biosynthesis reactions and thus results 

in an increased number of anthocyanins at the cellular level. In fact, a correlation 

analysis has demonstrated a strong and positive relationship (r2 ≥ 0.95) between gene 

expression encoding biosynthetic enzymes and metabolites produced in the anthocyanin 

biosynthetic pathway (Castellarin et al. 2007b), demonstrating that the anthocyanin 
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concentration is increased due to upregulation of the phenylpropanoid pathway. 

Furthermore, it has been shown that drought stress not only positively influences the 

cumulative number of anthocyanins in plant tissues, but it also modifies the composition 

of anthocyanins as it specifically promotes the accumulation of tri-hydroxylated 

anthocyanins, due in part to a higher expression of flavonoid 3`-hydroxylase (F3`H) and 

F3`5`H (Deis et al. 2011; Santesteban et al. 2011). For example, Castellarin et al. 

(2007b) reported that in V. vinifera the concentrations of tri-hydroxylated anthocyanins, 

such as delphinidin, petunidin and malvidin, were higher under drought stress than in 

well-watered control treatments. However, the concentration of di-hydroxylated 

anthocyanins, such as cyanidin and peonidin, was similar for both control and drought 

stress treatments (Castellarin et al. 2007b). Therefore, there are multiple levels of 

regulation of anthocyanin biosynthesis under drought stress. 

 Previously, Chalker-Scott (1999) had suggested that anthocyanin compounds have 

a role in osmotic regulation by contributing to the maintenance of turgor pressure and 

thus tolerance to drought. However, Hughes et al. (2013) suggested that the role of 

anthocyanin compounds was likely not in osmotic protection because of low 

anthocyanin concentrations and their high metabolic cost compared to other solutes, 

such as proline and soluble sugars, which are typically found to be more effective in 

osmotic adjustment. A recent study by Sperdouli and Moustakas (2014) in A. thaliana 

suggested that anthocyanins can have an important antioxidant role under drought stress 

as drought-stressed leaves maintained oxidative compounds (such as malondialdehyde) 

within the same range as found in control leaves, thereby implying that a biochemical 

mechanism was in operation to cope with oxidative damage. Therefore, we can suggest, 

based on the above-mentioned reports, that higher expression of F3`H, F3`5`H and 

UFGT genes under drought stress will allow the accumulation of tri-hydroxylated 
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anthocyanin forms, giving a greater antioxidant capacity. This capacity depends in part 

on the numbers of hydroxyls in the anthocyanin chemical structure. Therefore, specific 

modification of the basic structure can be employed by the plant cell in order to help 

increase the defense mechanisms against reactive oxygen species (ROS). 

 

2.4 Induction mechanism under drought stress 

As discussed in the previous section, anthocyanin content is increased under 

drought stress due to upregulation of the expression of key genes in the 

phenylpropanoid pathway, although the induction mechanism is still unclear. Some 

authors have suggested that higher anthocyanin content under drought stress could be 

due to increases in the levels of ABA (Jiang and Joyce 2003; Deluc et al. 2009; 

Bucchetti et al. 2011). For example, McCarty et al. (1989) demonstrated that an A. 

thaliana mutant with reduced sensitivity to ABA blocks anthocyanin biosynthesis, 

suggesting that ABA plays an important role in the induction of anthocyanin 

biosynthesis. Furthermore, Fambrini et al. (1993) have demonstrated, using a 

Helianthus annuns mutant plant deficient in ABA biosynthesis, that ABA accumulation 

is necessary for the induction of anthocyanin biosynthesis. In another study, Nagira et 

al. (2006) induced osmotic stress in Torenia plants with sucrose (Table 2). They 

determined that under osmotic stress endogenous ABA levels rise significantly before 

the induction of anthocyanin synthesis. This led them to suggest that changes in the 

amount of endogenous ABA may play an important role in the induction of anthocyanin 

synthesis. Recently, it has been shown that treatments of Fragaria x ananassa fruits and 

Salvia miltiorrhiza hair roots with fluridone (an ABA biosynthetic inhibitor) resulted in 

a strong suppression of anthocyanin biosynthesis (Cui et al. 2012; Kadomura-Ishikawa 
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et al. 2015). Hence, further previous evidence supports ABA playing a direct or indirect 

role in the induction of anthocyanin biosynthesis under drought stress.  

On the molecular level, ABA has been shown to be involved in anthocyanin 

biosynthesis via its ability to increase the expression levels of several key genes of the 

phenylpropanoid pathway. For example, Shen et al. (2014) reported that treatment of 

Prunus avium with the ABA biosynthetic inhibitor nordihydroguaiaretic acid (NDGA) 

downregulated the expression levels of Myeloblastosis A (MYBA), a transcription factor 

that interacts and activates the promoters of the DFR, ANS and UFGT genes. These 

authors also showed that the endogenous ABA levels as well as the transcript levels of 

CHS, chalcone isomerase (CHI), F3H, DFR, UFGT and MYBA were blocked by 

silencing the 9-cis-epoxycarotenoid dioxygenase (NCED) gene, which encodes a key 

enzyme in the ABA biosynthetic pathway. Another study by Medina-Puche et al. (2014) 

showed that F. x ananassa plants subjected to drought stress increased endogenous 

ABA levels as well as the expression of MYB and anthocyanin accumulation in fruit 

tissues. Finally, Li et al. (2015) showed that silencing the 8´-hydroxylase (CYP707A2) 

gene, which encodes a key enzyme in the oxidative catabolism of ABA, further 

increased anthocyanin accumulation as well as endogenous ABA levels, and stimulated 

the expression of the transcription factor MYBA, all compared to the control (without 

silenced CYP707A2). Consequently, Li et al. (2015) suggested that anthocyanin 

synthesis is tightly regulated by endogenous ABA levels. 
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Table 2. Effect of endogenous abscisic acid on anthocyanin concentrations in plants 

under drought stress  

 

Species Evaluated 

organs 

 

ABA 

concentration 

Organ growth  Effects on 

anthocyanin 

References 

Vitis 

vinifera cv. 

Tempranillo 

Fruits Increased 

2643 ng g-1 

dw 

Lower growth 

than well 

watered 

treatment 

Increased 

concentration  

Antolín et al. 

2006 

Torenia 

fournieri 

shoots 10 ng g-1 fw Not reported Increased 

concentration 

Nagira et al. 2006 

Vitis 

vinifera cv. 

Cabernet 

Sauvignon 

Fruits Increased 

4000 ng g-1 

dw  

Lower growth 

than well 

watered 

treatment 

Increased 

concentrations 

Deluc et al. 2009 

Vitis 

vinifera cv. 

Cabernet 

Sauvignon 

Fruits Increased 500 

ng g-1 fw 

Not reported  Increased 

concentrations 

Wheeler et al. 

2009 

Vitis 

vinifera cv. 

Aragonez 

Fruits Increased 

1850 ng g-1 fw 

Inhibited 

growth 

Increased 

concentration 

Zarrouk et al. 

2012 

fw= fresh weight, dw= dry weight. 

 

Therefore, all these biochemical, hormonal and molecular studies confirm that 

an ABA balance is important for regulating anthocyanin biosynthesis, and thus its 

accumulation under drought stress. We therefore propose the following possible 

mechanism for the induction of anthocyanin synthesis emphasizing the participation of 

ABA under drought stress (Fig. 3). Under conditions without drought or other osmotic 

stress, ABA levels and anthocyanin concentrations in plant organs are basal (Fig. 3A). 

In contrast, under drought stress there is an increase in ABA biosynthesis which leads to 

the induction of the mechanisms discussed above for anthocyanin biosynthesis, 

increasing the anthocyanin concentrations above their basal levels (Fig. 3B). Drought 

stress augments ABA biosynthesis in roots (Davies and Zhang 1991), where it can 

subsequently be transported to stems and leaves by the xylem (Taiz and Zeiger 2002), 
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increasing ABA concentration in leaves, and/or there is an ABA biosynthesis directly in 

the leaf tissues. Then, the binding of newly produced and/or released ABA to its 

receptors must occur to trigger the downstream signaling cascade of biochemical and 

molecular events. 

 

. Fig. 3 Proposed model for ABA and miRNA156 interaction on the induction of 

anthocyanin biosynthesis under drought stress  

 Abscisic acid receptors are still the subject of critical study with currently 

three proposed candidates: an extracellular receptor known as G-protein coupled 

receptor2 (GCR2) (Pandey et al. 2009); a plastid receptor known as magnesium 

chelatase subunit H (CHLH) receptor (Shen et al. 2006); and a cytoplasmic receptor 

known as pyrabactin resistance (PYR)/regulatory component of ABA receptor 

(PYR/RCARs) (Park et al. 2009). However, the mechanism of GCR2 and CHLH in 

ABA downstream signaling is unknown; hence, their participation as ABA receptors 

have not yet been confirmed (Risk et al. 2009; Taiz and Zeiger 2010; Miyakawa et al. 

2013). By contrast, the action of PYR/RCAR as an ABA receptor is well supported by 

several studies (Kharenko et al. 2013; Gonzalez-Guzman et al. 2014; Kim et al. 2014). 

A B 
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Furthermore, a critical review (Zhang et al. 2015) of the current status of our 

understanding of ABA receptors supports the idea that only the PYR/RCAR can 

currently be referred to as a bona fide ABA receptor. Finally, the recent discovery of 

ABA transporters in the plasma membrane (PM) supports the proposed function of 

PYR/RCAR receptors. These transporters belong to the ATP-binding cassette (ABC) 

transporter family, encoded by AtABCG40 (Kang et al. 2010), AtABCG25 (Kuromori et 

al. 2010) and AtABCG22 genes (Kuromori et al. 2011). Therefore, when endogenous 

ABA levels increase in the leaves of drought-stressed plants, ABA molecules cross the 

plasma membrane by transporters (Boursiac et al. 2013) and bind to PYR/RCARs, 

triggering the downstream signaling cascade (Zhang et al. 2015). It has been clearly 

demonstrated that ABA binding to PYR/RCARs inhibits the type 2C protein 

phosphatases (PP2C) and thus results in disruption of the interaction between PP2C and 

sucrose non-fermenting related protein kinase 2 (SnRK2), releasing its inhibition of 

SnRK2. SnRK2 is activated by autophosphorylation and can then activate downstream 

targets such as NADPH oxidase located in PM (Sirichandra et al. 2009; Kimura et al. 

2012; Boneh et al. 2012; Miyakawa et al. 2013). It has been shown that NADPH 

oxidase oxidates molecular oxygen (Foreman et al. 2003) and produces superoxide 

radical (O2
.-) (Fig. 2B). Then, with the help of superoxide dismutase (SOD), O2

.- is 

rapidly converted to hydrogen peroxide (H2O2) in plants exposed to drought stress 

(Foreman et al. 2003; Hu et al. 2006; Furlan et al. 2013). 

It has been widely recognized that hydrogen peroxide functions as a secondary 

messenger in ABA signaling (Taiz and Zeiger 2010: Taiz et al. 2016). Wang et al. 

(2013) showed the importance of PYR/RCARs receptor in ROS production as plants 

without PYR/RCARs receptors were not able to increase ROS production. Therefore, 

bound ABA-PYR/RCARs are essential for H2O2 production. The H2O2 induced by ABA 
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accumulation promotes anthocyanin biosynthesis in leaves of O. sativa seedlings as was 

shown by Hung et al. (2008). These authors reported that treatments with chemical traps 

for H2O2 effectively inhibited anthocyanin accumulation, confirming that H2O2 is 

required for anthocyanin buildup. Zhang et al. (2014) also indicated that H2O2 is 

involved in the regulation of anthocyanin synthesis, showing that inhibition of NADPH 

oxidase activities downregulates anthocyanin synthesis in Malus domestica peel. In 

addition, H2O2 can also activate calcium (Ca2+) channels at the plasma membrane, 

promoting extracellular Ca2+ influx and raising the cytosolic [Ca2+] (Pei et al. 2000). 

The production of H2O2 activates the NADPH oxidase releasing Ca2+ from calcium 

stores such as chloroplast, mitochondria, and rough endoplasmic reticulum (Wang et al. 

2013). The importance of Ca2+ in the production of anthocyanin has been demonstrated 

by treatments with verapamil (a calcium channel blocker), which caused a reduction of 

anthocyanin levels in cell cultures of Daucus carota and V. vinifera (Sudha and 

Ravishankar 2003; Vitrac et al. 2000). More recently, analysis of the time-dependency 

performed by Shien et al. (2013) showed that the antagonists of Ca2+ strongly interfere 

with anthocyanin accumulation throughout downregulation of Production of 

Anthocyanin Pigment 1 (PAP1) expression in A. thaliana. Therefore, both H2O2 and 

Ca2+ play an important role in the metabolic pathway of the proposed mechanism.  

Ca2+ has also been recognized as an important second messenger in the signal 

transduction pathways of plant hormones and environmental stimuli (Zou et al. 2010: 

Gilroy et al. 2016). To date, two major classes of plant calcium sensors in signal 

transduction have been identified: calcium-binding proteins (calmodulins) and Ca2+-

dependent protein kinases (or CPKs) (Hong-Bo et al. 2008; Dubrovina et al. 2013). 

However, the participation of one of specific Ca2+ sensor mechanism in anthocyanin 

synthesis remains unknown. CPKs are one of the best characterized Ca2+ sensors in 
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plants and have been shown to be involved in the response to abiotic stresses in plants 

(Gao et al. 2014). CPKs are directly activated by the binding of Ca2+, and their 

activation regulates downstream components (Harper et al. 2004). The Ca2+-dependent 

protein kinase family consists of 34 genes in A. thaliana (Hrabak et al. 2003), 31 genes 

in O. sativa (Asano et al. 2005), 40 genes in Z. mays (Kong et al. 2013), 20 genes in 

Triticum aestivum (Li et al. 2008), and 12 genes in Vitis amurensis (Dubrovina et al. 

2013). This calcium sensor has different locations, including the cytosol, nucleus, 

endoplasmic reticulum, and plasma membrane (Yoon et al. 1999; Dammann et al. 

2003). In A. thaliana, AtCPK3, AtCPK6 (Mori et al. 2006), and AtCPK10 (Zou et al. 

2010) are important in the regulation of ion channel and in ABA-regulated stomatal 

closure. The AtCPK11 and AtCPK32 positively regulate ABA signaling by 

phosphorylating stress-responsive transcription factors ABF1 and ABF4 (Choi et al. 

2005; Zhu et al. 2007). The ZmCPK11 protein is involved in antioxidant enzymatic 

defense (Ding et al. 2013). Under drought stress, there are many CPKs whose function 

remains unknown. The CPKs potentially involved in anthocyanin biosynthesis are 

among those of unknown function, but such protein kinases could be expected to act as 

with better characterized CPKs and activate transcription factors, and thus upregulate 

anthocyanin synthesis under drought stress. Signal transduction pathways are complex, 

and it will require significant additional research to understand this process well. 

Nevertheless, it is clearly an important research target of high reward to elucidate which 

CPKs are associated with anthocyanin synthesis in order to have a complete 

understanding of the mechanism for induction. 
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Table 3. The microRNAs involved in responses of plants under drought. 

 

miRNA Expression 

pattern 

Targets Role References 

miRNA164 Down NAC domain 

transcription factors 

Lateral root 

development 

Guo et al. 2005 

miRNA398 Up Cu/Zn superoxide 

dismutases 

Response to oxidative 

stress 

Trindade et al. 2010; 

Sunkar et al. 2006. 

miRNA169 Down CCAAT binding factor 

(CBF) 

Nodule development Li et al. 2008 

miRNA156 Up Squamosa Promoter 

Binding protein-like 

Transition from juvenile 

to adult phase 

Wang et al. 2011; Kantar 

et al. 2010. 

miRNA171 Down GRAS transcription 

factors 

Floral development Llave et al. 2002. 

 

As mentioned above, CPKs can regulate the activity of diverse targets by 

phosphorylation. It has recently been reported that a protein kinase can phosphorylate 

human microRNAs (miRNAs), enhancing miRNA production and increasing their 

stability (Paroo et al. 2009; Herbert et al. 2013), thus suggesting potential for a similar 

mechanism in plants. Plant miRNAs are small non-coding RNAs, which consist of 20-

24 nucleotides that activate or inhibit gene expression via transcriptional or post-

transcriptional processes. miRNAs act by controlling expression levels of multiple 

genes and thus have been reported to regulate root initiation, flower development, and 

physiological responses to environmental stimuli (Khraiwesh et al. 2012; Eldem et al. 

2013). In particular, drought stress often increases the expression of some specific 

miRNAs (Table 3). For example, microRNA 156 (miRNA156) was shown to be 

upregulated as a dehydration stress-responsive gene in Hordeum vulgare (Kantar et al. 

2010), Phaseolus vulgaris (Nageshbabu et al. 2013b), Vigna unguiculata (Barrera-

Figueroa et al. 2011), Glycine max (Li et al. 2011), Panicum virgatum (Sun et al. 

2012b), A. thaliana (Liu et al. 2008), and Eleusine coracona (Nageshbabu et al. 2013a). 

Furthermore, Boopathi (2015) has identified that miRNA 156 is expressed in response 

to an increase in endogenous ABA levels. Likewise, transcription factors could be 
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involved in plant responses under drought stress (Agarwal et al. 2006). One group of 

transcription factors which includes the basic domain/Leu zipper (bZIP), MYB and 

MYC are activated by increased ABA biosynthesis; meanwhile, the other transcription 

factors may follow an ABA-independent signal transduction pathway, such as c-repeat 

binding factor (CBF)/drought response elements binding (DREB) proteins (Agarwal et 

al., 2006). However, a crosstalk between ABA-dependent and ABA-independent 

activation of different transcription factors have been documented in several plants 

(Fujita et al. 2011). Haake et al. (2002) reported that CBF/DREB can respond to an 

ABA-dependent signal transduction pathway. In addition, it has been reported that 

miRNAs associated with CBF/DREB transcription factor increase drought stress 

tolerance (Shi and Hussain, 2016; Candar-Cakir et al., 2016). Recent studies have also 

shown that CBF/DREBs can increase the expression of miRNA 156 (Hackenber et al. 

2012: Artilip et al. 2016). Therefore, these findings suggest that upregulation of miRNA 

156 under drought stress is driven by higher ABA levels and the downstream signaling 

cascade which they activate.  

The functional role of miRNA156 in the adaptation of plants to drought stress 

has been suggested by Nageshbabu et al. (2013a) and Kantar et al. (2010). However, 

exactly what such a possible functional role might be under drought stress is still largely 

unknown. Recently, Gou et al. (2011) showed the overexpression of miRNA156 

promoted anthocyanin accumulation in A. thaliana, whereas wild type plants 

accumulated significantly less anthocyanin. In addition, expression of anthocyanin 

synthesis and structural genes (DFR, UFGT, ANS and F3`H) was greatly increased, and 

their transcripts were higher by over 30-fold. Furthermore, Cui et al. (2014) confirmed 

the involvement of miRNA156 in drought stress tolerance through the use of target 

mimicry methodology where A. thaliana plants with blocked miRNA156 action were 
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extremely sensitive to drought stress and accumulated lower anthocyanins than drought 

stressed-plants without miRNA156 blockage. In the same experiment, Cui et al. (2014) 

also demonstrated that the expression levels of two genes of the phenylpropanoid 

pathway, DFR and PAP1, were induced in the drought-stressed plants without 

miRNA156 blockage, concluding that the miRNA156 pathway is contributing to 

drought stress tolerance via its involvement in anthocyanin biosynthesis. It has also 

been shown that miRNA828 affects anthocyanin accumulation during phosphate 

deficiency (Hsieh et al. 2009). Furthermore, it has been suggested that miRNA828 can 

act directly upon the transcription factors (AtMYB113, AtMYB75 and AtMYB90) that 

are known to be involved in anthocyanin synthesis (Hsieh et al. 2009). Finally, it was 

reported that miRNAs could also act directly on gene targets at the transcriptional level 

(Jopling et al. 2005; Orom et al. 2008). This transcriptional upregulation mechanism has 

been called RNA activation (RNAa) (Portnoy et al. 2011). Therefore, we further 

hypothesize that under drought stress higher expressions of miRNA156 may produce a 

greater expression of anthocyanin genes such as DFR, UFGT, ANS or F3`H, which 

form the multienzyme complex that will synthesize a higher content of anthocyanins in 

the cytosolic face of the RER. After synthesis on the cytosolic face of the RER, the 

anthocyanins would then be stored in the vacuole (Sun et al. 2012a; Li et al. 2017b). 

 

2.5 Conclusions and future perspectives 

 

Anthocyanins have received great attention by a number of plant and nutrition 

researchers. Their biosynthetic pathway, sites of synthesis, and aspects of their transport 

have all been well established. Our level of knowledge about the molecular response 

expression of key genes of phenylpropanoid pathways has increased considerably, and 
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this has helped to partially elucidate responses leading to accumulation of anthocyanins. 

The results from molecular studies and the evidence presented above suggest that under 

drought stress ABA interacts with anthocyanin biosynthesis and potentially throughout 

miRNA156 as we have proposed in the model (Fig 3). This hypothesis should hopefully 

guide future experimental approaches and help lead to solutions of such research 

challenges including a better understanding of responses under drought stress. This 

might improve plant defense response mechanisms against reactive oxygen species, as 

this represents an important goal plant tolerance to drought stress. 
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Abstract 

Drought is the most important stress factor for plants, being the main cause of agricultural 

crop loss in the world. Plants have developed complex mechanisms for preventing water 

loss and oxidative stress such as synthesis of abscisic acid (ABA) and non-enzymatic 

antioxidant compounds such as anthocyanins, which might help plants to cope with abiotic 

stress as antioxidants and for scavenging reactive oxygen species. A. chilensis (Mol.) is a 

pioneer species, colonizing and growing on stressed and disturbed environments. In this 

research, an integrated analysis of secondary metabolism in Aristotelia chilensis was done 

to relate ABA effects on anthocyanins biosynthesis, by comparing between young and 

fully-expanded leaves under drought stress. Plants were subjected to drought stress for 20 

days, and physiological, biochemical, and molecular analyses were performed. The relative 

growth rate and plant water status were reduced in stressed plants, with young leaves 

significantly more affected than fully-expanded leaves beginning from the 5th day of 

drought stress. A. chilensis plants increased their ABA and total anthocyanin content and 

showed upregulation of gene expression when they were subjected to severe drought (day 

20), with these effects being higher in fully-expanded leaves. Multivariate analysis 

indicated a significant positive correlation between transcript levels for NCED (9-cis-

epoxycarotenoid dioxygenase) and UFGT (UDP glucose: flavonoid-3-O-

glucosyltransferase) with ABA and total anthocyanin, respectively. Thus, this research 

provides a more comprehensive analysis of the mechanisms that allow plants to cope with 

drought stress. This is highlighted by the differences between young and fully-expended 

leaves, showing different sensibility to stress due to their ability to synthesize anthocyanins. 

In addition, this ability to synthesize different and high amounts of anthocyanins could be 
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related to higher NCED1 and MYB expression and ABA levels, enhancing drought stress 

tolerance. 

 

Keywords: anthocyanins; fully-expanded leaves; maqui; phytohormone; water stress; 

young leaves 
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3.1 Introduction 

Drought stress is the main cause of loss in production of agricultural crops in the world, 

reducing yields by more than 50% (Boyer, 1982; Pessarakli, 2010). Water stress can limit 

photosynthesis, plant growth, and can even cause the death of plants (Raven, 1984; 

Moreno, 2009). Thus, drought is considered the most important stress factor for plants. 

Plants have developed complex mechanisms for preventing water loss and counteracting 

oxidative damage, such as stomatal closure, synthesis of abscisic acid (ABA), and non-

enzymatic antioxidant compounds (Zhang et al., 2001).  

It has been well established that ABA plays an important role in controlling plant 

water balance by stomatal closure during drought stress (Finkelstein, 2013). ABA 

biosynthesis involves many steps, however, it has been demonstrated that drought stress 

increases 9-cis-epoxycarotenoid dioxygenase (NCED) gene expression, which encodes an 

enzyme in the ABA biosynthesis pathway, considered a key regulatory step during drought 

stress (Tuteja et al., 2007; Maruyama et al., 2014; Trivedi et al., 2016). Higher NCED 

expression has been associated with increases in ABA concentration in plant organs such as 

fruits and leaves of different species (Luchi et al., 2001; Zhang et al., 2009; Finkelstein, 

2013). At the cellular level, ABA binds to the ABA-receptors, increasing ROS and 

cytosolic calcium (Ca2+) in guard cells. Both these components modulate ion channels, 

decreasing guard cell turgor and closing the stomata (Finkelstein, 2013; Singh et al., 2017). 

It has been suggested that ABA can be involved in regulation of anthocyanin synthesis; 

however, the molecular mechanisms for possible regulation have not yet been elucidated 

(Jiang and Joyce, 2003; Deluc et al., 2009; Gagné et al., 2011; Kondo et al., 2014; Murcia 

et al., 2017). It has been reported that drought stress induces anthocyanin accumulation due 
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to the up-regulation of key genes from the anthocyanin pathway such as dihydroflavonol 4-

reductase (DFR), UDP-glucose:flavonoid 3-O-glucosyl transferase (UFGT) and 

transcription factors such as Myeloblastosis A1 (MybA1) (André et al., 2009; Borsani et al., 

2010; Castellarin et al., 2007a; Castellarin et al., 2007b; Santesteban et al., 2011). 

Anthocyanins might help plants to cope with abiotic stress as antioxidants and for 

scavenging reactive oxygen species (ROS), thus increasing drought stress tolerance (Agati 

et al., 2012; Nakabayashi et al., 2014; Sperdouli and Moustakas, 2014; Kovinich et al., 

2015; Li et al., 2017). Some studies have reported that young and fully-expanded leaves of 

several species have differences in secondary metabolites and ABA content in response to 

abiotic stresses such as UV-B, low nitrogen supply, and salinity (Zdunek and Lips, 2001; 

Reifenrath and Müller, 2007; Ibañez et al., 2008; Chen et al., 2013). However, the effect of 

drought stress on the biosynthesis of secondary metabolites and ABA separately has 

primarily focused in fully expanded leaves (Tattini et al., 2004: Yuan et al., 2012: Ma et al., 

2014; Griesser et al., 2015). Thus, information is still limited regarding an integrated 

analysis of secondary metabolism related to ABA focused on anthocyanins biosynthesis 

during leaf development that is comparing young to fully-expanded leaves under drought 

stress. 

Aristotelia chilensis (Mol.), also known as Maqui, is an endemic berry in Chile 

belonging to the Elaeocarpaceae family (Hoffman et al., 2005). Maqui is an evergreen tree 

distributed from Illapel (Coquimbo Region) to Chiloe (Los Lagos Region) (Hoffman et al., 

2005). A. chilensis is a pioneer species, colonizing and growing on stressed and disturbed 

environments, thus being an interesting model for studying abiotic stress resistance 

mechanisms (Hoffman et al., 2005; Fredes et al., 2012). Maqui has been of great interest for 
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farmers and consumers due to its antioxidant action with high anthocyanin concentrations 

(Fredes et al., 2014). This interest has led to the development of morpho-phenological, 

physiological, and genetic diversity studies to establish agronomic parameters and the 

development of strategies of selection and breeding (Fredes et al., 2014; Vogel et al., 2014, 

Bastías et al., 2016). Consequently, in this study, we investigated the effects of drought 

stress on anthocyanin biosynthesis and endogenous ABA levels in young and fully-

expanded leaves of A. chilensis.  

3.2 Materials and methods 

3.2.1 Plant materials and experimental conditions 

Plants of maqui (Aristotelia chilensis) obtained from in vitro conditions and donated by 

BestPlant Co. (Curico, Chile) were used in this study. One-year-old plants were 

transplanted to 2 L pots filled with Andisol soil and acclimated in a greenhouse 

(temperature: 25±3 ºC; photoperiod: light 16 h/8 h dark; humidity: 60-70%; and a mean 

photosynthetic active radiation (PAR) at midday of 300 µmol m-2 s-1) for 2 weeks. Plants 

were then divided into two groups (20 plants for each group); daily irrigated (DI) and non-

irrigated (NI). The DI plants were irrigated daily at field capacity; meanwhile, NI plants 

were exposed to water withholding to initiate drought stress. The experiment was carried 

out for 20 days. At different time points (0, 5, 10 and 20 days) of the experiment, leaf 

samples were collected in the morning at two different positions from the plants for 

physiological, biochemical and molecular analysis. The two different positions represented 

different leaf ages: young leaves, from middle to the top; and fully-expanded leaves, from 
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middle to basal leaves. Leaves were frozen in liquid nitrogen and stored at -80 ºC prior to 

determination of the biochemical parameters. 

3.2.2 Plant growth measurement  

Relative growth rate (RGR) was determined according to Hoffmann and Poorter (2002), as 

the mean natural logarithm-transformed dry weight (DW) at the beginning and the end of 

the experiment, where t1 and t2 are the times 0 and 20 days, respectively. RGR was 

calculated by Formula 1. 

Formula 1: 

RGR = [(lnDW2) − (lnDW1)/(t2 − t1)] 

3.2.3 Plant water status  

Relative water content (RWC) was determined by the method described by Rahimi et al. 

(2010). Two leaves were removed, weighed and immersed into double distilled water to 

saturate them with water for the next 24 h at 4 ºC and dark conditions. Then, leaves were 

oven dried to a constant weight at 60 °C. Next, the dry weights were determined. The RWC 

was calculated according Formula 2 (below). Leaf water potential (Ψmd) was measured 

using a Scholander chamber Plant Moisture Stress (Model 1000, Instrument Co., Corvallis, 

Ore.) in the morning, following the protocol proposed by Matthews et al. (1987).  

Formula 2: 

RWC = [(fresh weight – dry weight)/(turgor weight – dry weight)] x 100 
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3.2.4 Endogenous ABA determination 

Endogenous ABA was quantified by the isotope dilution method, essentially as described 

by Liu et al. (2012) for auxin analysis, using NH2 resin solid phase extraction (SPE) 

TopTip minicolumns. After methylation by diazomethane, the samples were then injected 

into a gas chromatograph (GC) coupled to single quadrupole mass spectrometer (MS) (GC-

MS-SIM, Agilent 6890N GC System with an Agilent 7683 Automatic Liquid Sampler and 

an Agilent 5973 MS; column, temperatures, carrier gas and other analysis conditions were 

exactly as described in Liu et al. 2012) and the samples were analysed using selected ion 

monitoring (SIM) with Agilent Chemstation software. Deuterated-abscisic acid ([2H6]ABA) 

was used as internal standard (Liu et al., 2012), and it was synthesized according to Dobrev 

et al. (2005) yielding a product with no detectable unlabeled ABA and a major predominate 

ion at m/z 194 for the [2H4]ABA isotopomer. Endogenous ABA concentration was thus 

determined from the ion abundance at the base peak of each compound: the m/z value of 

190 for plant ABA, and the m/z value of 194 for [2H4]ABA using the isotope dilution 

equation which accounts for the isotopomer distribution in the internal standard (Liu et al. 

2012). 

3.2.5 Lipid peroxidation 

Lipid peroxidation (LP) was measured based on the formation of thiobarbituric acid-

reactive substances (TBARS) according to the modified method of Du and Bramalage 

(1992). Absorbance was measured spectrophotometrically at 440, 532 and 600 nm 

(UV/VIS Unico SpectroQuest 2800) in order to correct the interference generated by 
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TBARS-sugars complexes. The TBARS content was expressed as nmol of 

malondialdehyde (MDA) per gram of dry weight (nmol MDA g-1 DW).  

3.2.6 Antioxidant activity determination 

Antioxidant activity was determined in leaves by the DPPH (2.2-diphenyl-1-picryl-

hydrazyl) method described by Chinnici et al. (2004). Absorbance was measured to 515 nm 

(UV/VIS Unico SpectroQuest 2800). Antioxidant activity was expressed as mg of Trolox 

equivalent per gram of dry weight (mg TE-1 DW). 

3.2.7 Determination of total phenols 

The Folin-Ciocalteau method was used to determine total phenols (TP) (Singleton and 

Rossi, 1965). Absorbance was measured spectrophotometrically at 765 nm (UV/VIS Unico 

SpectroQuest 2800) using caffeic acid as standard. 

3.2.8 Total and profile of anthocyanins 

Total anthocyanins (TA) were determined as previously described by Strack and Wray 

(1989) by the pH differential method. Absorbance was measured at 530 and 675 nm 

(UV/VIS Unico SpectroQuest 2800). Total content of anthocyanins was expressed as mg of 

cyanidin-glucoside equivalent (C3G) per gram of dry weight. To determine the anthocyanin 

profile, the protocol for anthocyanidin determination was used as described by Ribera et al. 

(2010). Determinations were performed using a High Performance Liquid Chromatography 

(HPLC) system (Jasco LC-Net IIADC) equipped with a photodiode array detector (DAD) 

(Jasco MD 2015 Plus) and separations were done on a Kromasil Reversed-Phase (RP-18) 

C18 column (250 x 4.6 mm).  
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3.2.9 Total RNA isolation and cDNA synthesis 

Total RNA was isolated from 200 mg of leaves by the method describe by Jaakola et al. 

(2001). RNA concentrations were measured spectrophotometrically using a Spectral 

Scanning Multimode Reader Varioskan Flash µDropTM Plate (Thermo Scientific, 

Wilmington, USA). Likewise, RNA purity was determined using the A260/A280 and 

A260/A230 ratios. RNA quality was also evaluated visually through gel electrophoresis of 

the denatured RNA. First-strand cDNA was synthesized from 2 µg of total RNA from A. 

chilensis leaves, which was reverse-transcribed by M-MLV (Promega, MA, USA) 

following the manufacturer`s recommendations. To remove genomic DNA, the cDNA was 

cleaned according to Jaakola et al. (2004) using a DNA gel extraction kit (Millipore 

Corporation, Bedford, MA, USA). 

3.2.10 Real-time quantitative PCR (qRT-PCR) analysis 

Quantitative real-time (qRT-PCR) reactions were conducted in order to determine the 

expression patterns of AcNCED1 and AcUFGT in A. chilensis leaves. All qRT-PCR 

reactions were performed using Brilliant II SYBR Green QPCR Master Mix (Agilent 

Technologies, Santa Clara, California) in an ABI 7300 Real-Time PCR system (Applied 

Biosystems, Foster City CA, USA) using the procedure described by Inostroza-Blancheteau 

et al. (2014). NCED and Elongation Factor 1 alpha (EF1a) sequences of Vitis vininfera, 

Populus euphratica, and Prunus persica were obtained from Genbank®.  Sequence 

alignments were done using the Clustal Omega program (www.ebi.ac.uk) and primers were 

design using AmplifX 1.7.0. Transcripts were sequenced and confirmed in Genbank®. 

Finally, specific primers were design based on the sequences in AmplifX1.7.0. Aristotelia 

http://www.ebi.ac.uk/
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chilensis UFGT primers were kindly providing by Dr. Victor Polanco from Universidad 

Mayor, Chile. The specific primers used in this study are shown in Table 1, which 

amplified 180 bp fragments. EF1a is a stably expressed gene that was used as the internal 

control. All the experiments were performed using three biological replicates. Cycling 

conditions were 95 ºC for 10 min, followed by 40 cycles at 94 ºC for 30 s, 60 ºC for 30 s, 

and 72 ºC for 30 s. Gene expression data (Ct values) were employed to quantify relative 

gene expression using the comparative 2-ΔΔCt method described by Livak and Schmittgen 

(2001). 

Table 1. Primer sequences used for quantitative real-time reverse transcriptase-polymerase 

chain reaction (qRT-PCR) analysis of NCED1 and UFGT genes. The EF1a was used as an 

internal control. 

Gene Forward primer (5` to 3`) Reverse primer (5` to 3`)  

NCED1  AAA GAC CCG GTT CGC GTA CT TCT GAA TTG GGG TCT CTG GGA A 

UFGT TTC CAG GAA TGT CTC AAG TA CAA AGG AGT TTA TGA AGA CT 

EF1a  CTC CTG GGC ATC GTG ACT TT CCA AGG GTG AAA GCA AGC AA 

 

3.2.11 Experimental design and data analysis 

A complete randomized design was used with five replicates for each treatment and time. 

The results are expressed as mean and standard error of the mean (±SE) for each treatment. 

All data passed the normality and equal variance Kolmogorov-Smirnov tests. Means were 

analyzed using a three-way ANOVA, where the factors were time, leaf age and treatment. 

The Tukey multiple comparison test at p ≤ 0.05 was used. Sigma Stat 3.5 (SYSTAT 
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Software Inc.) was used to performed the statistical analysis. Relationships among variables 

were examined using Pearson correlation analysis at a significance level of P < 0.05. The 

resulting p-values were corrected using one R script displayed by the Rbio software 

(www.biometria.ufv.br). A Principal Component Analysis was performed to reduce the 

dimensionality of the data set and identify the variables that explained a higher proportion 

of the total variance (Minitab® 17 statistics program, Minitab Inc., Philadelphia). 

 

3.3 Results 

3.3.1 Growth and plant water status during drought stress 

After 20 days under water limiting conditions it was observed that the RGR was strongly 

affected by drought stress, where stressed (NI) plants displayed a reduction of 71% in the 

growth rate compared to well-watered (DI) plants at the end of the experiment (Fig. 1). A 

42% RGR reduction was observed after 10 days of drought treatment, reaching its lowest 

growth on the 20th day. When plants were subjected to severe drought stress, leaf water 

potential (Ψw) decreased significantly through the experiment, where young leaves were 

significantly more affected than fully-expanded leaves from 5th day of drought stress (Fig. 

2A). In this parameter, young leaves of stressed plants decreased their Ψw around 6-fold 

with respect to control plants at the end of the experiment; meanwhile, fully-expanded 

leaves of NI plants reduced their Ψw around 5-fold regarding to fully-expanded leaves of DI 

plants at the same time (Fig. 2A). Concerning RWC, DI and NI plants maintained their 

RWC values during the first days of the experiment, decreasing significantly from 10th day. 
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Young and fully-expanded leaves of NI plants showed a decrease of about 40-45% in their 

RWC compared to their control plants at the end of the experiment (Fig. 2B). 

 

Figure 1. Relative growth rates of Aristotelia chilensis plants grown under two water 

treatments; Daily-irrigated (DI) and Non-irrigated (NI). All values represent averages of 

three biological replicates ±SE. Asterisks indicate significant differences between 

treatments for the same day (P ≤ 0.05). 
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Figure 2. Plant water status; (A) Leaf water potential and (B) Relative water content in 

young and fully-expanded leaves of Aristotelia chilensis plants grown under two water 

treatments; Daily-irrigated (DI) and Non-irrigated (NI). All values represent averages of 
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three biological replicates ±SE. Asterisks indicate significant differences between 

treatments for the same day and leaf age (P ≤ 0.05). 

3.3.2 ABA levels under drought stress 

Throughout the experiment period, significant differences (p≤0.05) were observed in the 

endogenous ABA levels in leaves between NI and DI plants from 5th day, after withholding 

(Fig. 3). When plants were subjected to severe drought stress (day 20), ABA levels of 

young and fully-expanded leaves increased significantly to reach around 6-fold with respect 

to control plants. Meanwhile, young and fully-expanded leaves of well-watered plants 

maintained their endogenous ABA levels relatively constant around 2.3 μg g-1 DW. When 

we compared young and fully-expanded leaves of NI plants, we observed significant 

differences between their ABA levels, being higher in fully-expanded leaves (about 20%) 

than in young leaves (Fig. 3). 
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Figure 3. Endogenous abscisic acid in young and fully-expanded leaves of Aristotelia 

chilensis plants grown under two water treatments; Daily-irrigated (DI) and Non-irrigated 

(NI). All values represent averages of three biological replicates ±SE. Asterisks indicate 

significant differences between treatments for the same day and leaf age (P ≤ 0.05). 

3.3.3 Lipid peroxidation  

Lipid peroxidation (LP) in leaves of stressed plants, including young and fully-expanded 

leaves, showed a significant increase throughout the experiment (Fig. 4). Young and fully-

expanded leaves increased their LP levels about 50% on the 20th day of drought stress, with 

young leaves affected earlier than fully-expanded leaves, showing an increase in their LP 

levels from the 5th day (Fig. 4).  
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Figure 4. Lipid peroxidation in young and fully-expanded leaves of Aristotelia chilensis 

plants grown under two water treatments; Daily-irrigated (DI) and Non-irrigated (NI). All 

values represent averages of three biological replicates ±SE. Asterisks indicate significant 

differences between treatments for the same day and leaf age (P ≤ 0.05). 

3.3.4 Antioxidant activity and total phenols 

The antioxidant activity (AA) only showed statistically significant differences in young 

leaves from the 10th day of drought stress (p≤0.05), where it increased about 35% with 

respect to control leaves of the same leaf age (Fig. 5A). In contrast, fully-expanded leaves 

of stressed plants only showed an increase at the end of the experiment. An increase of 
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about 22% was found in total phenols of young and fully-expanded leaves from the 10th day 

of drought stress (Fig. 5B).  

 

Figure 5. Antioxidant activity (A) and total phenols (B) in young and fully-expanded 

leaves of Aristotelia chilensis plants grown under two water treatments; Daily-irrigated 
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(DI) and Non-irrigated (NI). All values represent averages of three biological replicates 

±SE. Asterisks indicate significant differences between treatments for the same day and leaf 

age (P ≤ 0.05). 

3.3.5 Total anthocyanin content and profile  

The total anthocyanin (TA) content increased in young and fully-expanded leaves of 

stressed plants from the 10th day of the experiment with respect to their well-watered plant 

leaves. Fully-expanded leaves of NI plants had a significantly (p≤0.05) higher TA content 

compared to young leaves of the same plants (Fig. 6). The TA content was higher in fully-

expanded leaves at day 20 of drought stress, where it had increased 7-fold compared to 

control plant leaves of the same leaf age. Meanwhile, young leaves of NI plants increased 

their TA content 2-fold compared to DI plants. Moreover, the anthocyanidin profile was 

different throughout the experiment. HPLC analysis showed that cyanidin was present in 

both leaf types in control and stressed plants during the experiment. However, cyanidin was 

increasing from the 10th day in young leaves and from the 5th day in fully-expanded leaves 

of stressed plants, remaining constant in control plants throughout the experiment (Fig. 7b). 

The highest cyanidin increment was found at the 20th day of the experiment, where 

cyanidin increased 17-fold in young leaves of NI plants compared to their DI plants. On the 

other hand, we detected malvidin only in fully-expanded leaves from the 5th day of the 

experiment. However, there was a significant increase (30-fold) in fully-expanded leaves 

compared to well-watered plants at the end of the experiment (Day 20). Interestingly, 

delphinidin was only detected in fully-expanded leaves of stressed plants at the 20th day of 

the experiment, when plants were subjected to severe drought stress (Fig. 7a) 
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Figure 6. Total anthocyanins in young and fully-expanded leaves of Aristotelia chilensis 

plants grown under two water treatments; Daily-irrigated (DI) and Non-irrigated (NI). All 

values represent averages of three biological replicates ±SE. Asterisks indicate significant 

differences between treatments for the same day and leaf age (P ≤ 0.05). 
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Figure 7. Anthocyanidins (A) of fully-expanded leaves, and cyanidin (B) obtained by 

HPLC in young and fully-expanded leaves of Aristotelia chilensis plants grown under two 
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water treatments; Daily-irrigated (DI) and Non-irrigated (NI). Mv=Malvidin. 

Dp=Delphinidin. n.d.=non-detected. All values represent averages of three biological 

replicates ±SE. Different upper case letters indicate significant differences between 

treatments for the same day and leaf age, different lower case letters among days for the 

same treatment and leaf age, and asterisks between leaf age for the same treatment and day 

(P < 0.05). 

 

3.3.6 Gene expression analysis under drought stress 

The expression NCED1 and UFGT, involved in ABA and anthocyanin biosynthesis 

pathways, respectively, was investigated in A. chilensis in response to drought stress by 

qRT-PCR. The NCED1 gene showed a basal expression during the first days of the 

experiment (until the 5th day) in young and fully-expanded leaves of stressed plants (Fig. 

8A). After that, NCED1 expression was enhanced 8-fold at the 10th day of the experiment 

likely as a consequence of intensified drought stress severity. NCED1 reached the highest 

expression at the 20th day of the experiment, when drought stress was more severe. 

Meanwhile, control plants remained constant in their NCED1 expression level throughout 

the experiment. We observed that fully-expanded leaves of stressed plants had higher 

NCED1 expression during the experiment as compared to young leaves. On the other hand, 

UFGT expression increased significantly (2-fold) in fully-expanded leaves of stressed 

plants from the 10th day of drought stress with respect to the control (Fig. 8B). Fully 

expanded leaves of stressed plants showed the highest UFGT expression (5-fold) at the 20th 

day of drought stress with respect to control leaves. Meanwhile, UFGT expression in young 
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leaves of stressed plants did not change significantly during the experiment, with exception 

being at the 20th day where a slight increase was observed (Fig. 8B). 

 

Figure 8. qRT-PCR analysis of NCED1 (A) and UFGT (B) mRNA levels in young and 

fully-expanded leaves of Aristotelia chilensis plants grown under two water treatments; 
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Daily-irrigated (DI) and Non-irrigated (NI). Three independent biological replicates ±SE 

were used for this study. All data were normalized to geometric mean value from AcEF1a 

internal control. Asterisks indicate significant differences between treatments for the same 

day and leaf age (P ≤ 0.05). 

 

3.3.7 Correlation analysis of all traits measured  

Pearson correlation analysis was performed to determine the level of association between 

traits measured in A. chilensis. First, by using data only from control treatments in the 

correlation analysis, we did not find any significant correlation between the variable 

measured (data not shown). Nevertheless, when Pearson correlation analysis was performed 

with all traits measured from drought stressed plants 14 significant correlations (P < 0.05) 

were observed. The correlation coefficients are presented in a correlation matrix (Fig. 9). 

Among the significant correlations, we found seven strong positive correlations between 

transcript levels of NCED and UFGT and ABA levels (r = 0.98) and total anthocyanins (r = 

0.97), respectively. By contrast, we found that plant water status variables (Ψw and RWC) 

were negatively correlated with most of the metabolite and transcript data sets (Fig. 9). 
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Figure 9. Correlation matrix based on Pearson coefficients derived from physiological, 

metabolic and transcript data from Aristotelia chilensis in young and fully-expanded leaves 

grown under Non-irrigated (NI) treatment for 20 days. Correlation coefficients are 

presented in colors, and the significant ones are indicated in bold (P). In addition, the 

asterisk represents significances based on p-value corrected by FDR correction 

(Bonferroni-Hochberg). Abbreviations: Abscisic acid (ABA), total anthocyanins (TA), 

cyanidin (Cy), antioxidant activity (AA), leaf water potential (LWP), total phenols (TP), 

relative water content (RWC), Lipid peroxidation (TBARS), 9-cis-epoxycarotenoid 

dioxygenase (NCED), UDP-glucose:flavonoid 3-O-glucosyl transferase (UFGT). 

3.3.8 Principal component analysis 

All measured variables were used to perform the analysis of the principal components. 

Through the PCA results, it was possible to observe a clear influence of the drought stress 

Total Anthocyanins 0.679

Cyanidin 0.692 0.966

AA 0.584 0.212 0.28

LWP -0.942 -0.464 -0.511 -0.759

Total Phenols 0.676 0.005 0.011 0.706 -0.846

RWC -0.994 -0.707 -0.711 -0.616 0.942 -0.681

TBARS 0.953 0.586 0.602 0.718 -0.945 0.703 -0.955

NCED 0.983 0.688 0.682 0.574 -0.936 0.69 -0.991 0.949

UFGT 0.705 0.973 0.933 0.145 -0.464 0.024 -0.725 0.611 0.707
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modulating some parameters of the stressed plants. Interestingly, all the control treatments 

remained in the same group. The first component (PC1) explained 75.8% of the variation 

and the second component (PC2) only 17.2%, which shows that PC2 did not distinguish the 

plants under control and drought stress. This result turned our attention to the separation 

explained by PC1 (Fig. 10A). We observed that the analysis of principal components 

separated three groups, whose were also confirmed by Euclidean distance. Group I, 

includes all control plants and plants subjected to drought stress for 5 days; group II, 

includes the plants (young and fully-expanded leaves) with 10 days under drought stress 

and the plants that went through 20 days of stress; and group III composed only by fully-

expanded leaves of drought stressed plants at 20th day. When we analyzed the variables that 

contributed to the separation of the groups, it was verified that the grouping of control 

plants together with those treated for 0 and 5 days (group I) was separated mainly by RWC 

and LWP variables. However, the plants that remained under stress for 10 and 20 days and 

were clustered with groups II and III, were separated by AA, TBARS, total phenols, ABA, 

NCED transcript levels, total anthocyanins, cyanidin and UFGT transcript levels. However, 

the fully-expanded leaves of plants that remained in the stress for 20 days were more 

influenced by total anthocyanin, cyanidin and UFGT expression levels (Fig.10B). 
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Figure 10. Principal component analysis. (A) Score plot derived data of young (square) and 

fully-expanded leaves (circle) from Aristotelia chilensis, grown under daily-irrigated (C; 
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blue gradient), and Non-irrigated treatments in different days [0 days (T0), 5 days (T5), 10 

days (T10) 20 days (T20); red gradient]. The large circles represent the three clusters 

formed by the Euclidean distance method. (B) In Loading plot the direction and length of 

the lines are directly proportional to variables importance in separating groups. PC1, 

principal component 1; PC2, principal component 2. Abbreviations: Relative water content 

(RWC), leaf water potential (LWP), antioxidant activity (AA), abscisic acid (ABA), Lipid 

peroxidation (TBARS), 9-cis-epoxycarotenoid dioxygenase (NCED), UDP-

glucose:flavonoid 3-O-glucosyl transferase (UFGT). 

 

3.4 Discussion 

Climate change is predicted to exacerbate water limitation in several areas around the 

world, affecting crop production. In this sense, several studies have shown the negative 

effects of drought stress on physiology, metabolism and plant growth in different species 

such as Phaseolus vulgaris, Glycine max, Arabidopsis thaliana, Beta maritima, Pistacia 

lentiscus and Lavatera maritime (Kramer, 1983; Miyashita et al. 2005; Ohashi et al. 2006; 

Galmés et al. 2007; Choat et al. 2012; Li et al. 2017). Ψw and RWC decrease by 30 to 40% 

in plants by moderate drought stress (Galmés et al., 2007), which in our conditions was 

observed at day 10 of water withholding. A larger decrease was observed at severe water 

stress in A. chilensis after 20 days under drought, reaching Ψw values between -3 and -5 

MPa (Fig. 1, 2A-B). Young leaves of stressed plants showed a higher decrease in Ψw 

compared to fully-expanded leaves. In fact, in agreement with our results, Saito et al. 

(2007) reported that Ψw of young leaves was lower than fully-expanded leaves in Quercus 
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species. This can be attributed to that Ψw of young leaves must be lower than fully-

expanded leaves to ensure water flow through the plant. However, higher Ψw of fully-

expanded leaves (less negative) led us to consider that these leaves are more effective at 

closing stomata for maintaining turgor under drought stress (Patakas et al. 1997). It may be 

also possible that fully-expanded leaves have a higher capacity to synthesize ABA, which is 

the most important response mechanism involved in stomatal closure induced by drought 

stress (Dodd, 2005; Choudhary et al. 2012). In our experiment, ABA significantly 

increased in stressed plants, including young and fully-expanded leaves, reaching its 

maximum ABA level on the 20th day (Fig. 3). Such elevated ABA levels have been 

previously reported in Brassica napus and Vitis vinifera (Berli et al. 2010; Qaderi et al. 

2012). Although, ABA biosynthesis involves many steps, the 9-cis-epoxycarotenoid 

dioxygenase (NCED) enzyme is considered a key regulatory step during ABA biosynthesis 

in drought stress, due to the observation that NCED expression is induced by drought stress 

before ABA is accumulated (Finkelstein, 2013). In agreement with previous studies (Zhang 

et al. 2009; Karppinen et al. 2013), NCED1 expression was increased significantly in NI 

plants, concomitant with ABA concentration starting on day 10 of the experiment, when Ψw 

and RWC decreased from moderate to severe drought stress (Fig 3, 8A). In addition, 

NCED1 expression and ABA concentration were positively correlated (r = 0.98) in our 

study (Fig. 9). NCED overexpression in transgenic Arabidopsis increased ABA levels, 

promoting downstream ABA-inducible genes, and increasing drought tolerance (Luchi et 

al. 2001). ABA modulates target gene expression by the ABA-responsive element (ABRE) 

binding protein/ABRE binding factor (ABRE/ABF) transcription factors (Singh and Laxmi, 

2015). Thus, Yoshida et al. (2010) reported growth inhibition, and downregulation of LEA 
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class genes, which are proteins widely recognized to play crucial roles in drought stress 

tolerance, in Arabidopsis and Oryza sativa mutants deficient in AREB/ABF transcription 

factors (abre1, abre2, and abf3). Their results suggest that ABA plays an important role in 

drought stress tolerance activated by ABRE/ABF transcription factors. In our studies, fully-

expanded leaves always had a slightly significant (P≤0.05) higher ABA concentration than 

young leaves throughout the experiment in stressed plants. Similar to our results, Chen et 

al. (2013) and Zdunek and Lips (2001) reported that Triticum aestivum and Pisum sativum 

fully-expanded leaves had 30% higher ABA concentrations than young leaves when plants 

were subjected to drought stress. Therefore, we can suggest that higher NCED1 expression 

and the subsequent higher ABA concentration seems to contribute to drought stress 

tolerance, maintaining cell turgor (less negative Ψw) mainly in fully-expanded leaves.  

When plants are subjected to drought stress, increases of reactive oxygen species 

(ROS) in different cellular compartments such as chloroplasts, peroxisomes, and 

mitochondria occur (Cruz de Carvalho, 2008; You and Chan, 2015). These ROS are highly 

reactive and cause damage to DNA, proteins, carbohydrates, and lipids, which results in 

oxidative stress (Gill and Tuteja, 2010). The LP was assayed as an index of oxidative stress 

in our experiment. The LP showed a significant increase in stressed plants including young 

and fully-expanded leaves (Fig. 4). However, at day 5, young leaves of drought stressed 

plants increased 60% their LP compared to fully-expanded leaves, which did not change 

their LP at that time (Fig. 4), indicating that young leaves were earlier affected by drought 

stress. Both leaf types increased their LP levels about 50% on the 20th day of drought stress 

compared to control plants. In agreement with our results, Cechin et al (2010) reported 

higher LP levels (about 30%) in young leaves compared to fully-expanded leaves of 



Chapter 3: Age-related mechanism and its relationship with secondary metabolism and 

abscisic acid in Aristotelia chilensis plants (Mol.) subjected to drought stress 

_________________________________________________________________________ 

_____________________________________________________________________________ 
82 

 

Helianthus annuus subjected to drought stress during 6 days. In a previous study, higher LP 

levels in fully-expanded leaves could be attributed to the higher amount of chloroplasts 

compared to young leaves (Lepedus et al. 2011), suggesting that they are the main 

organelle generating ROS under drought stress, and LP levels are thus leaf age-dependent. 

Taken together, these findings suggest that fully-expanded leaves of stressed A. chilensis 

plants have a strong antioxidant mechanism to tolerate drought stress for longer time and to 

maintain lipid peroxidation at the same level as young leaves in our experiment. A. 

chilensis plants showed higher AA in young leaves starting on day 10 of drought stress, 

while total phenols increased in young and fully-expanded leaves from the 10th day of the 

experiment (Fig. 5B). Our finding did not differ from other reports, where higher AA and 

total phenols under drought stress have been reported previously in several species (Martins 

et al. 2016; Gharibi et al. 2016; Puente-Garza et al. 2017). However, total phenols seemed 

to be ineffective alone to alleviate LP produced by drought stress in fully-expanded leaves. 

Among phenolic compounds, anthocyanins are considered antioxidant compounds, which 

can donate electrons or generate protons, scavenging ROS (Zhang and Tsao, 2016). Thus, it 

has been reported that anthocyanin have a greater capacity to increase tolerance to abiotic 

stresses, including drought stress (Fini et al., 2012; Yuan et al., 2012; Nakabayashi et al. 

2014; Li et al. 2017; Naing et al. 2017). In our study, TA increased significantly in stressed 

plants in response to drought stress (Fig. 6). Surprisingly, TA content was higher in fully-

expanded leaves at the 20th day of drought stress compared to control plant leaves of the 

same age, while tri-hydroxylated anthocyanin such as malvidin and delphinidin were 

detected under severe drought stress at the end of the experiment. The UFGT gene encodes 

a key enzyme in anthocyanin biosynthesis (Luengo-Escobar et al. 2017) and both 
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Castellarin et al. (2007a) and André et al. (2009) showed that UFGT expression was 

increased under drought stress, resulting in increased total anthocyanins. In fact, in our 

study, a positive correlation between UFGT expression and total anthocyanin (r = 0.97) 

was found (Fig. 9). UFGT is highly modulated by transcriptional regulation via 

transcription factors (Nguyen et al. 2017). The myeloblastosis viral oncogene homolog 

(MYB) transcription factors are the best known key component regulating anthocyanin 

biosynthesis, which binds to the promoters of anthocyanin structural genes (Xu et al. 2017). 

In this sense, Nakabayashi et al. (2014) reported that Arabidopsis plants overexpressing 

MYB12 and MYB75 transcription factors, both involved on anthocyanin biosynthesis, 

over-accumulated anthocyanins in drought stressed plants. This accumulation was key to 

plant survival, suggesting that anthocyanin biosynthesis is highly controlled at the 

transcriptional level, enhancing drought stress tolerance. Our findings suggest that drought 

stress induces higher accumulation of anthocyanins levels due to up-regulation of the 

anthocyanin biosynthetic pathway, triggering tri-hydroxylated anthocyanins biosynthesis in 

fully-expended leaves, which have been shown to have significant antioxidant activity.  

Most of the reports on anthocyanin changes with water potential have considered 

ABA as the primary signal involved on anthocyanin biosynthesis regulation under drought 

stress (Gagné et al. 2011; Kondo et al. 2014; Murcia et al. 2017; González-Villagra et al. 

2017). Thus, when ABA increases under drought stress, it potentially regulates the 

activation of anthocyanin synthesis at the cytoplasmic level. In fact, Shen et al. (2014) 

reported genetic evidence where the ABA-induced MYBA activates the promoters of 

anthocyanin biosynthesis structural genes, suggesting that this MYB plays an important 

role in ABA-induced anthocyanin biosynthesis. In the same sense, González-Villagra et al. 
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(2017) proposed a molecular model for ABA and miRNA156 involving on the induction of 

anthocyanin biosynthesis under drought stress. This proposed model shows that ABA binds 

to the ABA receptor and induces upregulation of microRNA156, which in turns induces 

greater levels of anthocyanin gene expression, and thereby higher anthocyanin levels, 

indicating that this could be an important strategy to tolerate drought stress. In fact, Shen et 

al. (2014) reported a direct relation between ABA and anthocyanin biosynthesis in Prunus 

avium fruit, where the suppression of NCED1 decreases the transcript of biosynthetic 

anthocyanin genes and transcription factor PacMYBA, these results in the observed 

decrease in anthocyanin levels. In summary, our study revealed that A. chilensis plants 

showed an antioxidant mechanism to cope with drought stress. Plants subjected to drought 

stress; mainly fully-expanded leaves of stressed A. chilensis had higher ABA 

concentrations, total anthocyanin levels, and tri-hydroxylated anthocyanins, which together 

might contribute to the maintenance of lipid peroxidation. These results are also supported 

by a measured higher level of NCED and UFGT expression, which allowed A. chilensis to 

increase anthocyanin biosynthesis, thus contributing to drought stress tolerance. 

 

3.5 Conclusions 

These results provide a more comprehensive analysis of the mechanisms that 

underlie how A. chilensis is able to cope with drought stress and shows that between young 

and fully-expanded leaves different sensitivity to this stress is due to the leave’s differing 

ability to synthesize specific anthocyanins with antioxidant activity minimizes the effects of 

oxidative stress. In addition, this ability to synthesize different and higher amount of 

anthocyanins could be related to higher NCED1 and MYB expression and ABA levels, 
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enhancing drought stress tolerance. Further studies are required to clarify the specific ABA 

signaling mechanism involved on anthocyanin biosynthesis in relation to tolerating drought 

stress. 
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Abstract 

Abscisic acid (ABA) acts to regulate the physiological and biochemical mechanisms 

required to tolerate drought stress, which is generally considered the most severe abiotic 

stress. Because of this, it has been postulated that ABA might be involved in regulation of 

the biosynthesis of plant phenolic compounds, especially anthocyanins that accumulate in 

plants subjected to drought stress; however, the evidence for this postulate remains elusive. 

Therefore, to approach this issue, we studied whether ABA is involved in the accumulation 

of phenolic compounds, especially anthocyanin biosynthesis, using drought stressed 

Aristotelia chilensis plants, an endemic berry in Chile. Our approach was to use fluridone, 

an ABA biosynthesis inhibitor, and then subsequent ABA applications to young and fully-

expanded leaves of drought stressed A. chilensis plants. At different times (24, 48 and 72 h) 

of the experiment, plants were harvested and leaves were separately collected to determine 

the biochemical status. We observed that fluridone treatments significantly decreased ABA 

concentrations and total anthocyanin (TA) concentrations in A. chilensis stressed plants, 

including both young and fully-expanded leaves. TA concentrations following fluridone 

treatment were reduced around 5-fold, reaching control plant levels only after 24 h. ABA 

application strongly restored ABA levels as well as TA concentrations in A. chilensis 

stressed plant at the 48 h point of the experiment. We also observed that TA concentrations 

followed the same pattern as ABA concentrations in the ABA treated plants. qRT-PCR 

revealed that AcUFGT gene expression decreased in fully-expanded leaves of stressed A. 

chilensis plants treated with fluridone, while a subsequent ABA application increased 

AcUFGT expression. Taken together, our results suggest that ABA is involved in the 

regulation of anthocyanin biosynthesis under drought stress. 
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4.1 Introduction 

Plant growth and crop productivity are affected negatively by drought stress, which is 

considered the most severe of all abiotic stresses (Osakabe et al. 2014). Plants activate plant 

defense mechanisms to cope with drought stress by preventing water loss and also 

counteracting oxidative stress. Abscisic acid (ABA) is considered the key plant hormone 

which regulates the physiological and biochemical mechanisms enabling plants to tolerate 

drought stress (Finkelstein, 2013) and some authors have postulated that ABA might play 

an important role regulating the accumulation of phenolic compounds, including 

anthocyanins, that is observed in drought stressed plants (Jiang and Joyce; 2003; Deluc et 

al. 2009; Bucchetti et al. 2011). For example, Nagira et al. (2006) showed that osmotic 

stress in Torenia fournieri plants elevated endogenous ABA levels before anthocyanin 

biosynthesis induction and suggested that changes in the endogenous ABA concentration 

might play an important role modulating anthocyanin biosynthesis induction under drought 

stress. González-Villagra et al. (2017) proposed a model to explain how ABA could be 

involved in anthocyanin biosynthesis through the regulation by a microRNA 

(microRNA156) which acts to increase the expression of anthocyanin biosynthesis genes. 

Other authors have also suggested that different factors might influence anthocyanin 

concentrations more than endogenous ABA (Gagné et al. 2011; Kondo et al. 2014). How 

changes are reported can affect the interpretations as well since Antolín et al. (2006) 

reported that ABA and anthocyanin concentrations based on fresh weight increased in Vitis 

vinifera cv. Tempranillo fruits under drought stress but there was no difference in 

anthocyanin content on a per berry basis. Drought stress induces higher anthocyanin 

concentration due to an up-regulation of key anthocyanin pathway genes such as 
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dihydroflavonol 4-reductase (DFR), UDP-glucose:flavonoid 3-O-glucosyl transferase 

(UFGT) and transcription factors such as Myeloblastosis A1 (MybA1) and Myeloblastosis 

5A (Myb5A) (André et al. 2009; Borsani et al. 2010; Castellarin et al. 2007; Santesteban et 

al. 2011). In fact, the relationship between UFGT expression and anthocyanins has been 

demonstrated by correlation analysis, showing a high positive correlation (r ≥ 0.95; 

p≤0.05), indicating that the anthocyanin concentration is increased due at least in part to up-

regulation of UFGT expression (Castellarin et al. 2007b). There are, however, only a few 

reports regarding changes in endogenous ABA levels that link such changes with 

anthocyanin biosynthesis induction. Therefore, the role of ABA in regulation of 

anthocyanin concentrations under drought stress is still unresolved. In addition, the 

induction mechanisms resulting in higher anthocyanin concentration has not yet been 

elucidated (Ferrandino and Lovisolo, 2013: Petrussa et al. 2013; Murcia et al. 2017). 

Previously, it was reported that different leaf ages, comparing young to fully-expanded 

leaves,  show a distinct response relative to their ability to synthesize anthocyanin as well 

as ABA in response to stress (Gould et al. 2000; Hughes et al. 2007). Thus, leaf age appears 

to be a confounding factor involved in understanding the functional role of ABA regulation 

of anthocyanin biosynthesis. Understanding the induction mechanisms responsible for 

higher anthocyanin concentrations under drought stress might represent a powerful 

practical tool to manage and modify anthocyanin concentration in plant organs for 

agricultural and human health advantages. In this regard, it is important to know whether 

ABA is responsible for the increase of phenolic compounds including specifically 

anthocyanin biosynthesis under drought stress.  
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Aristotelia chilensis (Mol.), also known as maqui, is an endemic berry in Chile belonging to 

the Elaeocarpaceae family. It is an evergreen tree, distributed from Illapel (Coquimbo 

Region) to Chiloé (Los Lagos Region) (Hoffman et al., 2005). A. chilensis is a pioneer 

species, colonizing and growing on stressed and disturbed environments, thus making it an 

interesting model for studying plants with a well evolved abiotic stress resistance 

mechanism (Fredes et al. 2014). This endemic species has also been of great interest for 

farmers and consumers because of the antioxidant properties related to its high anthocyanin 

concentration. Currently, commercial crops A. chilensis are being established, promoting 

the development of morpho-phenological and physiological, and genetic diversity studies to 

establish agronomic parameters and to develop strategies of selection and breeding (Fredes 

et al. 2014; Vogel et al. 2014). Thus, in this study, we investigated ABA regulation of 

phenolic compound biosynthesis, mainly anthocyanins, in young and fully-expanded leaves 

of drought stressed A. chilensis plants. 

 

4.2 Materials and methods 

4.2.1 Plant material and treatments 

Micropropagated in-vitro Maqui plants (Aristotelia chilensis) donated by BestPlant Co. 

(Curico, Chile) were used in this study. One-year-old plants were transplanted to 2 L pots 

with Andisol soil and acclimated in a greenhouse (temperature: 25±3 °C; photoperiod: light 

16/8 h dark; humidity: 60-70%; and a mean photosynthetic active radiation (PAR) at 

midday of 300 µmol m-2 s-1) for two weeks. Plants were then divided into two groups (20 

plants for each group); daily irrigated (DI) and non-irrigated (NI). The DI plants were 
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irrigated at field capacity; meanwhile, NI plants were exposed to water withholding to 

initiate drought stress. The experiment was carried out for 20 days. When NI plants were 

stressed (the 20th day of drought stress, based on previous results), 100 µM Fluridone 

(Sigma, St. Louis, MO, USA) was homogenously applied by spraying on leaves. After 24 

h, in some cases, leaves were sprayed with a solution of 100 µM abscisic acid (Sigma). 

Both solutions were dissolved in ultrapure water containing 0.05% (v/v) of Tween 20, 

which was used as the surfactant wetting agent. Control solutions contained ultrapure water 

with only Tween 20. At different times (24, 48 and 72 hours) of the experiment, plants 

were harvested and leaves were collected at two different positions from the plants, 

representing different leaf ages: young leaves, from the middle to top; and fully-expanded 

leaves, from middle to basal leaves, for physiological and biochemical analysis. Leaves 

were frozen separately in liquid nitrogen and stored at -80 ºC to determine biochemical 

characteristics.  

4.2.2 ABA concentration 

Endogenous ABA was quantified by the isotope dilution method, essentially as described 

by Liu et al. (2012) for auxin analysis, using NH2 resin solid phase extraction (SPE) 

TopTip minicolumns. After methylation by diazomethane, the samples were then injected 

into a gas chromatograph (GC) coupled to a single quadrupole mass spectrometer (MS) 

(GC-MS, Agilent 6890N GC System with an Agilent 7683 Automatic Liquid Sampler and 

an Agilent 5973 MS; column, temperatures, carrier gas and other analysis conditions were 

exactly as described in Liu et al. 2012) and the samples were analysed using selected ion 

monitoring (SIM) with Agilent Chemstation software. Deuterated-abscisic acid ([2H6]ABA) 
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was used as internal standard (Liu et al. 2012), and it was synthesized according to Dobrev 

et al. (2005) yielding a product with no detectable unlabeled ABA and a major predominate 

ion at m/z 194 for the [2H4]ABA isotopomer. Endogenous ABA concentration was thus 

determined from the ion abundance at the base peak of each compound: the m/z value of 

190 for plant ABA, and the m/z value of 194 for [2H4]ABA using the isotope dilution 

equation which accounts for the isotopomer distribution in the internal standard (Liu et al. 

2012). 

4.2.3 Phenolic compound analyses by HPLC-photodiode array detection 

Phenolic acids and flavonols were analyzed in leaves of DI and NI plants using a high 

performance liquid chromatograph (HPLC; Jasco LC-Net II/ADC) with a Kromasil 

reverse-phase (RP)-18 column (250 x 4.6 mm i.d) equipped with a photodiode array 

detector (DAD) (Jasco MD 2015 Plus) (Ruhland and Day, 2000). The phenolic acids 

chlorogenic, caffeic, ferulic, gallic, and p-coumaric acid, and the flavonols quercetin, 

myricetin, kaempferol and rutin were used as standards (Sigma). These compounds were 

dissolved in methanol for the preparation of calibration curves. Absorbance was detected at 

320 nm. Acidified water (phosphoric acid 10%) (A) and 100% acetonitrile (B) was used as 

the mobile phase. The eluent gradient was: 0-9 min of 100% A, 9.1-19.9 min of 81% A, 

and 19% B, 20-15 min of 100% B.  

4.2.4 Total and profile of anthocyanin 

Total anthocyanins (TA) were determined using the pH differential method (Chang et al. 

2002). To determine TA, absorbance was measured spectrophotometrically at 530 and 675 
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nm (UV/VIS Unico SpectroQuest 2800). TA was expressed as mg of cyaniding-3-O-

glucoside equivalent (C3G) per gram of dry weight. The anthocyanin profile was based on 

anthocyanidin determination using the protocol described by Ribera et al. (2010), where 

delphinidin, malvidin, petunidin, cyanidin and peonidin were used as standards (Sigma). 

Anthocyanin profiles were obtained by HPLC as described above. The mobile phase was 

composed of acidified water (acetic acid 10%) (A) and 100% acetonitrile (B) with the 

following eluent gradient: 0-23.9 min of 90% A - 10% B, 23.9-24.1 min of 80% A – 20% 

B, 24.1-27 min of 20% A – 80% B, and then 27.1-37 min of 90% A – 10% B.  

4.2.5 Total RNA isolation and cDNA synthesis 

Total RNA was isolated as described by Jaakola et al. (2001). RNA concentrations were 

measured spectrophotometrically using a Spectral Scanning Multimode Reader Varioskan 

Flash µDropTM Plate (Thermo Scientific, Wilmington, USA). Likewise, RNA purity was 

determined using the A260/A280 and A260/A230 absorbance ratios. RNA quality was also 

evaluated visually following gel electrophoresis of the denatured RNA. First-strand cDNA 

was synthesized from 2 µg of total RNA from A. chilensis leaves, which was reverse-

transcribed by M-MLV (Promega, MA, USA) following the manufacturer`s 

recommendations. To remove genomic DNA, the cDNA was cleaned according to Jaakola 

et al. (2004) using a DNA gel extraction kit (Millipore Corporation, Bedford, MA, USA). 

4.2.6 Real-time quantitative PCR (qRT-PCR) analysis 

Quantitative real-time (qRT-PCR) reactions were conducted in order to determine the 

expression patters of AcUFGT in A. chilensis leaves. All qRT-PCR reactions were 

performed using Brilliant II SYBR Green QPCR Master Mix (Agilent Technologies, Santa 
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Clara, California) in an ABI 7300 Real-Time PCR system (Applied Biosystems, Foster 

City CA, USA) using the procedure described by Inostroza-Blancheteau et al. (2014). 

Elongation Factor 1 alpha (EF1a) sequences of Vitis vininfera, Populus euphratica, and 

Prunus persica were obtained from Genbank®. Sequence alignments were done using the 

Clustal Omega program (www.ebi.ac.uk) and primers were design using AmplifX 1.7.0. 

Transcripts were sequenced and confirmed in Genbank®. Finally, specific primers were 

designed based on the sequences in AmplifX1.7.0. AcUFGT primers were kindly providing 

by Dr. Victor Polanco from Universidad Mayor, Chile. The specific primers used in this 

study are shown in Table 1, which amplified 180 bp fragments. EF1a is a stably expressed 

gene that was used as the internal control. All the experiments were performed using three 

biological replicates. Cycling conditions were 95 ºC for 10 min, followed by 40 cycles at 

94 ºC for 30 s, 60 ºC for 30 s, and 72 ºC for 30 s. Gene expression data (Ct values) were 

employed to quantify relative gene expression using the comparative 2-ΔΔCt method 

described by Livak and Schmittgen (2001). 

Table 1 Primer sequences used for qRT-PCR analysis 

Gene Forward primer (5` to 3`) Reverse primer (5` to 3`) 

UFGT TTC CAG GAA TGT CTC AAG TA CAA AGG AGT TTA TGA AGA CT 

EF1A CTC CTG GGC ATC GTG ACT TT CCA AGG GTG AAA GCA AGC AA 

 

4.2.7 Experimental design and data analysis 

A completely randomized design was used with three replicates for each treatment and 

time. The results are expressed as mean and standard error of the mean (±SE) for each 

http://www.ebi.ac.uk/
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treatment. All data passed the normality and equal variance Kolmogorov-Smirnov tests. 

Means were analyzed using a two-way ANOVA. The Tukey multiple comparison test at P 

≤ 0.05 was used. Sigma Stat 3.5 (SYSTAT Software Inc.) was used to performed the 

statistical analysis. 

 

4.3 Results 

4.3.1 ABA concentrations in response to fluridone and ABA applications in drought 

stressed A. chilensis plants 

We previously determined that by the 20th day of the experiment without water A. chilensis 

experienced severe drought stress as evidenced by the highest ABA and TA levels in the 

stressed plants at this time. In addition, we observed significant differences between young 

and fully-expanded leaves of stressed plants in both these parameters. Thus, in order to 

better understand the role of ABA in regulating anthocyanin biosynthesis, we applied a 

fluridone solution (an inhibitor of phytoene desaturase, which inhibits biosynthesis of 

carotenoids). Treatment with the ABA inhibitor fluridone was followed by ABA 

application (after 24 h) on the leaves of plants subjected to severe drought stress. As 

expected, treatment with the fluridone solution reduced ABA concentrations in young 

leaves of stressed A. chilensis plants as well as in the fully-expanded leaves (Fig. 1). The 

ABA concentrations in both young and fully-expanded leaves was reduced about 75% in 

the stressed plants by fluridone application with respect to stressed plants without 

application of fluridone at the 24 h time point of the experiment (Fig. 1). When ABA was 

applied to young and fully-expanded leaves of A. chilensis plants, endogenous ABA 
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concentrations were increased in all treatments, including the fluridone treatment (Fig. 1 A 

and C). The ABA concentration also increased significantly, about 10-fold, in all treatments 

with respect to treated plants without ABA application at the 48 h time point of the 

experiment (Fig. 1). After 48 h, plant leaves without ABA application remained relatively 

constant their ABA levels during the experiment (Fig. 1 B and D). In all treatments with 

ABA applications, ABA concentrations decreased at the 72 h time point of the experiment 

(Fig 1 A and C).  
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Figure 1. Endogenous abscisic acid (ABA) concentration changes in response to two different water treatments and with or without 

fluridone solution application and with or without a subsequent ABA solution application. Aristotelia chilensis plants were either Daily 
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Irrigated (DI) or Non-Irrigated (NI). A) Young leaves with ABA application; B) Young leaves 

without ABA application; C) Fully-expanded leaves with ABA application; and D) Fully-expanded 

leaves without ABA application. Values represent means ± SE (n=3).  

4.3.2 Phenolic compound levels in response to ABA inhibitor and ABA applications in A. 

chilensis plants under drought stress.  

Flavonoids and phenolic acids were analyzed in young and fully-expanded leaves of A. chilensis 

treated plants (Fig. 2 and 3). Thus, young leaves of DI plants had higher endogenous pools of 

phenolic compounds compared to young leaves of NI plants throughout the experiment (Fig 2). 

Pools of phenolic compounds (PPC) decreased significantly in young leaves of DI plants treated 

with fluridone at 24 h (Fig. 2); whereas, at 72 h PPC doubled in the same leaf type of DI plants 

treated with ABA compared to young leaves without ABA application (Fig. 2). In contrast, DI 

plants without fluridone treatment maintained PPC in the young leaves throughout the experiment 

(Fig. 2). Young leaves of stressed plants treated with fluridone increased their PPC at 24 h, 

decreasing to about 30% after 24 h with ABA application as compared to stressed plants without 

exogenous ABA (Fig. 2). Fully-expanded leaves did not change significantly in their PPC content 

in DI plants throughout the experiment (Fig. 3). However, fully-expanded leaves of stressed plants 

had a slight increase (20%) of PPC with fluridone application throughout the experiment 

independent of ABA application (Fig. 3). The HPLC-DAD analyses revealed that rutin was the 

most abundant among flavonoids in young and fully-expanded leaves of A. chilensis. Surprisingly, 

rutin increased significantly in both leaf types of drought stressed A. chilensis plants (40 and 30%, 

in young and fully-expanded leaves, respectively) treated with fluridone and without ABA 

application compared to plants without fluridone during the experiment (Fig. 2 and 3). In addition, 
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after ABA application, rutin levels decreased significantly (about 40-50%) in both type leaves of DI 

plants and reached values similar to those of drought stressed plants without fluridone application 

(Fig 2 and 3). Without ABA application, rutin did not change during the time in both type leaves of 

DI plants independent of fluridone treatment (Fig. 2 and 3). Quercetin levels had a similar 

behaviour as the rutin levels throughout the experiment (Fig. 2 and 3). Among the phenolic 

compounds, coumaric acid and ferulic acid levels in both young and fully-expanded leaves were 

20% higher without ABA application with fluridone treated stressed plants compared to stressed-

plants without fluridone and ABA applications (Fig. 2 and 3). 
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Figure 2. Phenolic compounds in young leaves in response to two different water treatments with fluridone solution application, and a 

subsequently ABA solution application. Data on the left graph set shows daily irrigated (DI) plants and on the right data for non-

irrigated (NI) Aristotelia chilensis plants.  Values represent means ±SE (n=3). 
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Figure 3. Phenolic compounds in fully-expanded leaves in response to two different water treatments with fluridone solution 

application, and a subsequent ABA solution application. Data on the left graph set shows daily irrigated (DI) plants and on the right 

data for non-irrigated (NI) Aristotelia chilensis plants. Values represent means ±SE (n=3). 
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4.3.3 Profiles and total levels of anthocyanins in response to fluridone and ABA application 

under drought stress 

TA levels decreased about 5-fold in fully-expanded leaves of stressed plants treated with fluridone 

compared to stressed plants not fluridone treated at 24 h (Fig 4 A and B). In contrast, young leaves of 

stressed A. chilensis plants treated with fluridone did not change their TA levels significantly at 24 h 

(Annex 1). Surprisingly, exogenous ABA strongly reversed the effects of fluridone on TA 

concentrations in young and fully-expanded leaves of A. chilensis stressed plants at 48 h (Fig 4 and 

annex 1). The TA concentration decreased in stressed A. chilensis plants treated with ABA at the end 

of the experiment (72 h), following the same pattern as ABA concentration in ABA treated stressed 

plants (Fig 4 A). TA levels were not different in DI A. chilensis plants not treated with ABA (Fig 4 

B). When young and fully-expanded leaves were analyzed by HPLC-DAD to obtain the 

anthocyanidin profile, delphinidin, cyanidin, and malvidin were found to be present in fully-expanded 

leaves of the stressed plants during all the experiment (Table 2). Delphinidin was slightly decreased 

with fluridone treatment and with ABA application increasing 15-fold with respect to stressed plants 

treated without fluridone at 48 and 72 h.  Petunidin was detected in fully-expanded leaves of drought 

stressed A. chilensis stressed plants and decreased 30% with fluridone treatment, however ABA 

application reversed the decrease at 48 and 72 h (Table 2). Also, ABA treatment increased malvidin 

levels in fully-expanded leaves of drought stressed A. chilensis at 48 and 72 h. By contrast, only 

cyanidin was detected in young leaves of control and stressed plants treated with fluridone and ABA 

applications at 24 and 48 h (Table S1). 
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Figure 4. Total levels of anthocyanins (A and B) and relative expression of AcUFGT (C and D) in fully-expanded leaves in response to 

two different water treatments with fluridone solution application, and a subsequent ABA solution application. A and C) Fully-

expanded leaves with ABA application and B and D) Fully-expanded leaves without ABA application. Aristotelia chilensis plants were 

either Daily Irrigated (DI) or Non-Irrigated (NI). Values represent means ±SE (n=3). 
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Table 2 Anthocyanidins (µg g-1 DW) in fully-expanded leaves of A. chilensis. ND = No Detected. Values represent the means of three 

samples ±SD. (P<0.05). Different lowercase letters show statistically significant differences among the treatments for the same water 

irrigation regime and time. Different capital letters show significant differences between water irrigation regime for the same time and 

treatment. 

Harvest 

times (h) 

Fluridone 

(µM) 

ABA 

(µM) 

Irrigation 

treatment 

Delphinidin 

(µg g-1 DW) 

Cyanidin 

(µg g-1 DW) 

Petunidin 

(µg g-1 DW) 

Malvidin 

(µg g-1 DW) 

24 0 

 

DI ND 4.5±0.3B ND ND 

 

0 

 

NI 125.0±23.2 145.5±19.5A ND 184.6±29.8 

 

100 

 

DI ND ND ND ND 

 

100 

 

NI ND ND ND ND 

48 0 0 DI ND 3.2±0.2Ba ND ND 

 

0 0 NI 26.6±6.2c 26.1±3.4Acd 5.7±0.3b 27.9±2.1cd 

 

0 100 DI ND 7.4±1.1Ba ND 7.2±0.3Bb 

 

0 100 NI 56.7±0.0b 111.8±7.1Ab ND 89.1±16.7Ab 

 

100 0 DI ND 16.0±2.2Aa ND ND 

 

100 0 NI 21.8±5.7c 28.5±2.3Ac 3.8±0.5b 40.6±5.6c 

 

100 100 DI ND 8.6±0.8Ba ND 23.3±0.6Ba 

 

100 100 NI 348.7±12.5ª 237.2±15.7Aa 9.7±1.2a 300.0±4.5Aa 

72 0 0 DI ND 6.3±1.0Ba ND ND 

 

0 0 NI 94.1±21.9a 45.0±3.5Acd ND 53.0±3.6cd 

 

0 100 DI ND ND ND ND 

 

0 100 NI 114.1±18.7a 138.8±18.7a 3.7±0.6a 263.3±27.5a 

 

100 0 DI ND ND ND ND 

 

100 0 NI 87.4±12.2a 47.0±8.9c 2.3±0.4b 70.7±4.8bc 

 

100 100 DI ND 7.6±1.6Ba ND 23.3±0.8B 

 

100 100 NI 98.5±15.3a 87.0±5.1Ab 3.8±0.4a 114.4±29.7Ab 
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4.3.4 Gene expression analysis of the response to fluridone and ABA treatment by drought 

stressed A. chilensis  

The expression of AcUFGT was analyzed using qRT-PCR (Fig. 4 C, D). Fluridone treatment reduced 

about 5-fold AcUFGT expression in fully-expanded leaves of stressed A. chilensis plants compared to 

drought stressed plants not treated with fluridone at 24 h (Fig. 4 C and D). AcUFGT expression 

significantly increased with ABA application (Fig. 4 C). In particular, stressed A. chilensis plants 

treated with ABA showed up-regulation of AcUFGT expression by 8-fold with respect to stressed 

plants not treated with ABA at 48 h (Fig 4 C). By 72 h, however, all treatments showed a strong 

reduction in AcUFGT expression relative to 48 h. AcUFGT expression levels did not change in fully-

expanded leaves of fluridone treated plants not also treated with ABA between 48 and 72 h (Fig 4 D). 

Control plants (those not treated with fluridone nor ABA) remained unaltered in their AcUFGT 

expression levels throughout the experiment (Fig. 4 D). 

4.4 Discussion  

This study shows that ABA is involved in the regulation of anthocyanin biosynthesis in A. chilensis 

subjected to drought stress. We used two basic approaches, treatment with ABA itself to increase 

endogenous ABA levels and treatment with fluridone which is an inhibitor of phytoene desaturase, an 

enzyme of the carotenoid biosynthesis pathway, which reduces ABA biosynthesis through reduction 

of the levels of xanthophyll ABA precursors (Yoshioka et al. 1998; Seo and Koshiba, 2002, Nisar et 

al. 2015). Fluridone treatment, as expected, reduced ABA levels in both young and fully-expanded 

leaves of drought stressed A. chilensis plants, and exogenous ABA increased significantly ABA 

levels in all ABA treated plants. ABA treatment was effective at recovering TA levels after previous 

fluridone treatments. Fluridone treatments also increased the pool of phenolic compounds (PPC; 
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determined by the sum of individual phenolic compounds), and exogenous ABA reduced it. Jian and 

Joyce (2003) showed that ABA treated Fragaria x ananassa fruits showed increased TA levels 

compared with untreated fruits.  Differing reports have shown both that PPC increases in plants 

subjected to drought stress, while, others showed that these compounds decreased (Petridis et al. 

2012; Khoyerdi et al. 2016). Therefore, PPC responses under drought stress is not consistent for all 

plants and tissues. Shen et al. (2014) demonstrated that MYBA, a transcription factor involved on 

anthocyanin biosynthesis, increased in expression levels in ABA treated Prunus avium fruit 

suggesting that higher ABA levels associated with environmental stress might play an important role 

in the anthocyanin biosynthesis. Likewise, transcription factors, including a number of MYBs, which 

are involved in regulating UFGT expression and anthocyanin biosynthesis, have ABA-response 

elements (ABRE) (Ambawat et al. 2013, Lim et al. 2016). These ABRE increase MYBs expression, 

and as a consequence UFGT expression and anthocyanin biosynthesis. Therefore, from our data we 

suggest that when the ABA biosynthesis inhibitor was applied to plants, there would likely be less 

transcription factor MYBs, increasing anthocyanin precursors of phenylpropanoid pathway, and 

inhibiting anthocyanin biosynthesis. In contrast, when ABA was applied to plants, increases MYBs 

expression, and thus UFGT expression, triggered anthocyanin biosynthesis.  

Our results showed that fully-expanded leaves have a greater ability to synthesize higher amounts of 

anthocyanin, and different anthocyanidins compared to young leaves. We therefore analyzed 

AcUFGT expression in fully-expanded leaves of A. chilensis (Fig. 4 C and D). The expression of 

AcUFGT was affected differently by fluridone and ABA treatments. We found a strong down-

regulation of AcUFGT expression in stressed plants treated with fluridone while exogenous ABA 

recovered AcUFGT expression levels, which coincided with the highest TA levels (Fig 4 C). Previous 

studies showed that UFGT expression was induced by drought stress and exogenous ABA in several 
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species including Vitis vinifera, Vaccinium corymbosum, Vitis rotundifolia and Malus sieversii (Jeong 

et al. 2004; Castellarin et al. 2007a; Castellarin et al. 2007b; André et al. 2009; Koyama et al. 2010; 

Zifkin et al. 2012; Sun et al. 2017). Jia et al. (2017) showed that UFGT expression increased 5-fold in 

Vitis vinifera treated with ABA. It has been suggested that ABA might contribute to plant drought 

stress tolerance in past by inducing an increase of anthocyanins, which then help the plants to cope 

with abiotic stress induced antioxidants by scavenging reactive oxygen species (Jiang and Joyce; 

2003 Deluc et al. 2009; Bucchetti et al. 2011; Agati et al. 2012; Nakabayashi et al. 2014; Sperdouli 

and Moustakas, 2014). This basic hypothesis is supported by the observed anthocyanin biosynthesis 

increases and distribution. Anthocyanin biosynthesis occurs in different cell compartments,  with 

efficient transport systems, when plants are exposed to abiotic stresses (Polster et al. 2006; Zhao and 

Dixon, 2009; Agati et al. 2012; Agati et al. 2013; Kovinich et al. 2015; Li et al. 2017). In fully-

expanded leaves of stressed plants not only was cyanidin detected but also petunidin, which was not 

detected in young leaves (Table 2 and annex 2, respectively). In addition, it is known that antioxidant 

activity is dependent on anthocyanin structure, being higher in anthocyanins with more hydroxyl 

groups attached to their structure, as is the case of petunidin (Kahkonen and Heinonen, 2003). Thus, 

it is likely a consequence of drought stressed plants that synthesize ABA rapidly, also increase the 

biosynthesis of anthocyanins with higher antioxidant activity, like petunidin, to cope with oxidative 

stress. 

We observed that ABA application has an effect at short-time points due to the higher ABA levels 

rapidly increasing AcUFGT expression and TA levels. Over longer times however, ABA levels 

decreased in all treatments resulting in lower AcUFGT expression and decreasing TA levels. Hung et 

al. (2007) reported TA levels increasing after 24-36 h ABA application, and then TA levels decreased 

due to ABA homeostatic mechanisms which reduced the higher ABA levels resulting from 
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application. According to Seiler et al. (2011), ABA homeostasis is maintained in the face of 

artificially higher ABA levels by reduction by two possible mechanisms, ABA catabolism and ABA 

inactivation. The main route to ABA catabolism is converting it to phaseic acid, while ABA 

inactivation is mainly conjugating it to form the glucose ester (Xu et al. 2002; Kushiro et al. 2004; 

Lee et al. 2006). Our studies demonstrated that higher ABA levels promoted higher AcUFGT 

expression, triggering anthocyanin biosynthesis with strong antioxidant activity, mainly in fully-

expanded leaves of drought stressed plants and that reduction in ABA had essentially the opposite 

effect.  

 

4.5 Conclusions 

Our experiments allowed us to demonstrate that ABA regulated aspects of anthocyanin biosynthesis 

under drought stress. Furthermore, fluridone was an effective ABA inhibitor in A. chilensis stressed 

plant including young and fully-expanded leaves, and also demonstrated that ABA application was 

able to recover both endogenous ABA concentrations in fluridone treated plants as well as increase 

total anthocyanin and also inducing a different anthocyanin profile. In addition, we showed that high 

total anthocyanins are due at least in part to higher AcUFGT expression. However, it will be 

necessary in future studies to further explore the molecular mechanisms for ABA downstream 

processes leading to induction of anthocyanin biosynthesis under drought stress. A better 

understanding of these processes with allow management and modification of anthocyanin 

concentrations in plant organs thereby increasing plant tolerance to drought stress. 
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Fig. S1. Changes in total anthocyanins in young leaves in response to two different water treatments 

with or without fluridone solution application and with or without a subsequently ABA solution 

application. A) Young leaves with ABA application and B) Young leaves without ABA application. 

Aristotelia chilensis plants were either Daily Irrigated (DI) or Non-Irrigated (NI). Values represent 

means ±SE (n=3). 
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Table S1. Levels of anthocyanidins (µg g-1 DW) in young leaves of A. chilensis. ND = No Detected. 

Values represents the means of 3 ±SD. (P<0.05). Different lowercase letters show statistically 

significant differences among the treatments for the same water irrigation and time. Different capital 

letters show significant differences between water irrigation for the same time and treatment. 

Harvest 

times (h) 

Fluridone 

(µM) 

ABA 

(µM) 

Irrigation 

treatment 

Delphinidin  

(µg g-1 DW) 

Cyanidin 

(µg g-1 DW) 

Malvidin 

(µg g-1 DW) 

24 0 - DI ND 3.0±0.7B ND 

  0  - NI 65.2±1.2 66.6±1.8A 65.4±0.6 

  100  - DI ND ND ND 

  100  - NI ND ND ND 

48 0 0 DI ND 3.6±0.2Ba ND 

  0 0 NI ND 63.4±1.8Ab ND 

  0 100 DI ND 2.8±0.7Ba ND 

  0 100 NI 87.5±2.0 78.4±1.4Aa ND 

  100 0 DI ND ND ND 

  100 0 NI ND ND ND 

  100 100 DI ND ND ND 

  100 100 NI ND ND ND 

72 0 0 DI ND ND ND 

  0 0 NI ND ND ND 

  0 100 DI ND ND ND 

  0 100 NI ND ND ND 

  100 0 DI ND ND ND 

  100 0 NI ND ND ND 

  100 100 DI ND ND ND 

  100 100 NI ND ND ND 
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5.1 General discussion 

As mentioned in the introduction, drought is the main stress factor to plants, decreasing plant water 

status, plant growth and crop yields. Our findings reflected this situation, where Ψw and RWC were 

severely affected by drought stress at the end of the experiment; meanwhile, ABA levels significantly 

increased in young and fully-expanded leaves at the same time (Chapter 3; Fig. 1, 2 A-B). According 

to Galmés et al. (2007), Ψw, RWC, and plant growth decrease by 30-40% in plants by moderate 

drought stress, meanwhile, Ψw, RWC, and plant growth largely decrease under severe drought stress, 

which in our experiment was observed at day 20 of water withholding. We performed a previous 

experiment to evaluate severity and recovery of A. chilensis plants exposed to drought stress (annex 

4). This experiment allowed us determine that A. chilensis is able to recovery after a severe drought 

stress. Negative effects of drought stress have been reported in different species such as Arabidopsis 

thaliana, Phaseolus vulgaris, Glycine max and Beta maritima (Ohashi et al. 2006; Galmés et al. 2007; 

Choat et al. 2012; Li et al. 2017). A reduced plant growth in plants subjected to drought stress could 

be attributed to stomatal closure, and thereby reduced CO2 levels, since, drought stressed plants 

increase ABA levels reducing stomatal aperture, and thus preventing water loss, which it is a 

physiological mechanism to cope drought stress (Pinheiro and Chavez, 2010; Finkelstein, 2013; 

Flexas et al. 2014; Basu et al. 2016). It has been also proposed that a reduction in photosynthesis and 

plant growth might be due to loss of ATP content, which starts to decrease with moderate water stress 

(Tezara et al. 1999; Flexas and Medrano, 1999; Lawlor and Gornic, 2002). Consequently, plant 

growth can be reduced by stomatal and metabolic limitations.  

Plants subjected to drought stress produce higher levels of reactive oxygen species (ROS) in different 

cellular compartments, which results in protein damage, DNA damage, and lipid peroxidation (Yazici 

et al 2007). Actual evidence shows that ROS are not only involved in damage and growth 
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impairment, but also signalling as secondary messengers (Mitller et al. 2011; Hideg et al. 2013), as 

we showed in our proposed molecular model in Chapter 2 (Fig. 3). Young and fully-expanded of A. 

chilensis plants exposed to drought stress showed similar lipid peroxidation levels at the end of the 

experiment, being significantly higher in stressed plants compared to control plants (Chapter 3, Fig. 

4). In contrast, previous studies have shown that fully-expanded leaves have higher lipid 

peroxidation, which could be attributed to the higher amount of chloroplasts compared to young 

leaves (Foyer and Noctor, 2005; Lepedus et al. 2011), indicating that chloroplasts are the main 

organelle generating ROS under drought stress. A possible explication to maintain lipid peroxidation 

in fully-expanded leaves at the same level as young leaves might be that fully-expanded leaves of A. 

chilensis have a strong antioxidant mechanism to tolerate drought stress. In this sense, our results 

indicated that young leaves of stressed A. chilensis plants showed higher PPC levels (determined by 

the sum of individual phenolic compounds), meanwhile, fully-expanded leaves of A. chilensis plants 

increased total anthocyanins from the 10th day of drought stress (Chapter 3, Fig. 5, 6). These results 

agree with other reports, where higher total phenols have been reported in several species subjected to 

drought stress such as Salvia officinalis and Agave salmiana (Martins et al. 2016; Gharibi et al. 2016; 

Puente-Garza et al. 2017). Among phenolic compounds, anthocyanins are considered as plant 

secondary metabolites with greater antioxidant activity, due to higher hydroxyl groups number 

attached to their structure, which scavenge ROS, increasing tolerance to abiotic stresses (Nakabayashi 

et al. 2014; Zhang and Tsao, 2016; Naing et al. 2017). Our results of higher total anthocyanins agree 

with Nakabayashi et al. (2014), where they showed that drought stress increased total anthocyanins. 

In addition, these authors showed that overexpression of anthocyanin biosynthetic genes, and thereby 

higher anthocyanin amount mitigates the accumulation of ROS. André et al. (2009) and Castellarin et 

al. (2007) reported that tri-hydroxylated anthocyanins such as delphinidin, petunidin, and malvidin 
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were higher in drought stressed Solanum tuberosum and Vitis vinifera plants compared to well-

watered treatments, while the content of di-hydroxylated anthocyanins such as cyanidin and peonidin, 

was similar for both treatments, suggesting that plants subjected to drought stress increase tri-

hydroxylated anthocyanin biosynthesis due to their greater antioxidant power in order to cope with 

drought stress. In fact, we detected cyanidin in control and stressed plants throughout the experiment; 

meanwhile, delphinidin was detected in drought stressed plants at day 20. Interestingly, we detected 

three different tri-hydroxylated anthocyanidins in fully-expanded leaves compared to young leaves, 

where we detected only one (Chapter 4, Table 2 and S2). General phenylpropanoid pathway consists 

of two main branches, where F3’H and F3’5’H are the enzymes catalyzing di-hydroxylated and tri-

hydroxylated anthocyanin biosynthesis, respectively (Winkel-Shirley 2006; Boudet 2007). Thus, we 

suggests that F3’5’H gene could be highly expressed in our drought stressed plants triggering tri-

hydroxylated anthocyanin biosynthesis. Therefore, these tri-hydroxylated anthocyanins help to 

increase the defense mechanism against ROS, tolerating drought stress.  

The 9-cis-epoxycarotenoid dioxygenase 1 (NCED1) gene encodes an important enzyme in the ABA 

biosynthetic pathway. In our study, NCED1 gene expression was affected by drought stress, 

increasing its expression in drought stressed plants, concomitant with ABA concentration (positively 

and significantly correlated, r = 0.98, P < 0.05; Chapter 3, Fig. 9). This has been also reported in 

previous studies with Vaccinium myrtillus and Vitis vinifera subjected to drought stress (Zhang et al. 

2009; Karppinen et al. 2013). On the other hand, fluridone treatments reduced NCED1 expression and 

ABA levels in young and fully-expanded leaves of drought stress A. chilensis plants at the 24 h of the 

experiment (Chapter 4, Fig. 1, 4), indicating that NCED1 gene is the key regulatory step in ABA 

biosynthesis pathway, as proposed by Finkelstein (2013). Likewise, total anthocyanins were reduced 

in both leaf types in plants subjected to drought stress by fluridone treatments. However, exogenous 
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ABA increased significantly about 10-fold ABA and anthocyanin levels in all ABA treated plants 

(Chapter 4, Fig. 1 A and C). As in our study, ABA treatment was effective at recovering TA levels 

after previous fluridone treatments in Fragaria x ananassa fruits (Jian and Joyce 2003). We found 

that fluridone strongly decreased anthocyanin biosynthesis, whilst ABA application recovered 

anthocyanin synthesis by triggering AcUFGT expression in drought stresses plants, which was 

increased in fully-expanded leaves (Fig. 4 C and D). UFGT expression analyses have shown that 

drought stress and exogenous ABA promotes their expression in several species such as Vitis vinifera, 

Vaccinium corymbosum, Vitis rotundifolia and Malus sieversii (Jeong et al. 2004; Castellarin et al. 

2007a; Castellarin et al. 2007b; André et al. 2009; Koyama et al. 2010; Zifkin et al. 2012; Sun et al. 

2017). According to Singh and Laxmi (2015) ABA modulates target gene expression by the ABA-

responsive element (ABRE) binding protein/ABRE binding factor (ABRE/ABF) transcription factors. 

It has been reported that MYBs, which are transcription factors that activate or represses anthocyanin 

biosynthesis structural genes, contains several stress-related cis-elements in the promoter sequence 

such as ABRE (Shen et al. 2017). Among these transcription factors MYBA1 is a fundamental 

component on anthocyanin biosynthesis, since it activates UFGT expression (Kobayashi et al. 2002; 

Walker et al. 2007). Cui et al. (2017) showed that drought stress up-regulated MYBA1 and thereby 

UFGT expression triggering anthocyanin biosynthesis. Therefore, we suggested that a high 

expression of MYBA1 could be involved on high UFGT expression observed in our study, triggering 

anthocyanin biosynthesis in our drought stressed plants. In our finding, young leaves showed high 

PPC and low anthocyanin levels compared to fully expanded leaves. As we mentioned above, 

transcription factors can also represses structural genes of anthocyanin biosynthesis. Thus, Salvatierra 

et al. (2013) reported a transcription factor, MYB1, repressing anthocyanin biosynthesis in Fragaria 

chiloensis (white Chilean strawberry). They showed that down-regulation of MYB1 resulted an up-
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regulation of anthocyanin biosynthesis, meanwhile, control treatments (with normal MYB1 

expression) showed higher phenol and flavonoid levels. Therefore, we suggest that young leaves of A. 

chilensis stressed plants could have repress anthocyanin biosynthesis at MYB and/or UFGT levels. 

Hung et al. (2007) reported that TA levels increase after 24-36 h ABA application, and then TA 

levels decreased due to ABA homeostatic mechanisms, which reduced the higher ABA levels 

resulting from application. These agreed with our results, where we found a decrease in ABA and 

total anthocyanins after 48 h of ABA application. According to Seiler et al. (2011), ABA homeostasis 

is maintained in the face of artificially higher ABA levels by reduction by two possible mechanisms: 

ABA catabolism and ABA inactivation. Some authors have suggested that different factors might 

have a higher influence on anthocyanin concentrations than endogenous ABA (Gagné et al. 2011; 

Kondo et al. 2014). However, we suggest that this evidence demonstrate the direct relationship 

between ABA and anthocyanin biosynthesis in drought stressed plants. Thus, ABA contribute to plant 

drought stress tolerance by inducing an increase of anthocyanins, which then help the plants to cope 

abiotic stress, inducing antioxidants by scavenging reactive oxygen species. At molecular level, we 

have proposed a model, which explain how ABA could be involved in anthocyanin biosynthesis 

through the regulation of a microRNA (156), which increases the expression of anthocyanin 

biosynthesis genes (Chapter 2, published as González-Villagra et al. 2017). This thesis contributes to 

understanding of molecular mechanism where ABA regulates anthocyanin biosynthesis. As we 

mentioned above A. chilensis is an endemic berry in Chile that produces leaves and fruits rich in 

anthocyanins and natural antioxidants (Sanchez et al. 2016). Anthocyanins, natural antioxidants, and 

their pharmacology properties of A. chilensis have been of great interest for farmers and consumers 

leading to the elaboration of products derived from this species. Thus, this thesis might be a great 
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contribution to increase anthocyanin levels in A. chilensis, and also promote tri-hydroxylated 

anthocyanin biosynthesis, which have great antioxidant power. 

Finally, we can indicate that the hypothesis of this thesis was validated according to the main results 

in this study. In summary, fluridone inhibited NCED expression and their concomitant ABA 

biosynthesis, which in turns inhibited UFGT expression and anthocyanin biosynthesis. However, 

ABA application recovered NCED expression, ABA biosynthesis, UFGT expression and anthocyanin 

biosynthesis. Thus, a basic model including the main responses to drought stress was elaborated 

(Chapter 5, Fig. 1).    
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Fig 1. Proposed model describing the main responses in A. chilensis plants subjected to drought 

stress. A) Normal conditions; B) Drought stress. Under drought stress, Ψw and RWC decrease, plant 

growth is reduced and lipid peroxidation increases, while, NCED1 expression increases, triggering 

ABA biosynthesis. This higher ABA levels promotes anthocyanin biosynthesis by UFGT expression. 

Under normal conditions (without drought stress), Ψw and RWC are not reduced, lipid peroxidation 

and plant growth are maintaining, NCED1 and ABA levels are basal, and anthocyanin biosynthesis is 

not increased, maintaining basal levels.  

5.2 Conclusions and future directions 

Our results showed that fluridone was an effective ABA inhibitor in drought stressed A. chilensis 

plants including young and fully-expanded leaves. Meanwhile, ABA application was able to recover 

both endogenous ABA concentrations in fluridone treated plants as well as increase total anthocyanin 

and also inducing a different anthocyanin profile. We showed that NCED1 triggers ABA 

biosynthesis, and thus promoting UFGT gene expression, and thereby anthocyanin biosynthesis, and 

their accumulation. Therefore, our study allows us to demonstrate that ABA regulates anthocyanin 

biosynthesis under drought stress. However, it will be necessary in future studies to further explore 

the molecular mechanisms for ABA downstream processes leading to induction of anthocyanin 

biosynthesis under drought stress. A better understanding of these processes will allow us 

management and modification of anthocyanin concentrations in plant organs thereby increasing plant 

tolerance to drought stress. 
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ANNEXES 

Annex 1 

 RNA extraction and cDNA synthesis from A. chilensis to molecular studies 

Using this method, we could isolate total RNA successfully. The purity of the total RNA was 

assessed using the A260/280 and 260/230 ratios given by NanoDrop. Agarose gel electrophoresis 

(1% w/v) revealed that intact ribosomal RNA bands (28 and 18 S) were clearly visible, indicating that 

RNA is undegraded (Fig 1). Besides, Agarose gel (1% w/v) revealed that cDNA was successfully 

synthesized (Fig 2).   

 

 

 

             

 

 

 

 

 

M       1        2          3  M         1          2       3 

Fig 1. Visualization of total 

RNA. Lane 1-3: leaf RNA. 

M:low range ladder (100-2000 

bp) 

 

Fig 2. Visualization of 

cDNA. Lane 1-3: leaf 

cDNA. M:low range ladder 

(100-2000 bp)  
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 DNA-free cDNA without Dnase treatment (Jakkola et al. 2004) 
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Using this method, we could obtain DNA-free cDNA without DNAse treatment.  

Fig 1. Visualization of total RNA, lane 1-4; and cDNA 

without DNAasa treatment, lane 5-8. M:low range ladder 

(100-2000 bp) 

Fig 2. Visualization of cDNA with cDNA cleaning by 

gel. Lane 1-4: leaf cDNA. M:low range ladder (100-

2000 bp)  
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Annex 2 

 Aristotelia chilensis UDP-glucose: flavonoid 3-O-glucosyltransferase (AcUFGT) gel 

 

 

 

 

 

 

 

 

 

 Sequencing results 

Forward: 

CGACGGAAATCCTGTTGTAGTTTTTGGGACCTGGAATCACTCTTCTCGCGTATGTTACATCAAATG

GGCATAGTGTTACCACAAGCTGCTGCAGTCTTCATAAACTCCTTTGA 

Reverse: 

GTGGATATTTTGTGACCATTTGATGTAACATACGCGAGAAGAGTGATTCCAGGTTCCCAAAAACA

ATTCCTTCAGGCAAGTCACGTATAAGTACTTGAGACATTCCTGGAAA 

 BLAST results 

 

 

Aristotelia chilensis nine-cis-epoxycarotenoid dioxygenase (AcNCED) 

 

 

Fig 1. Visualization of AcUFGT PCR product. Lane 1-3: different 

leaf samples. M:low range ladder (100-2000 bp) 

     M        1         2        3  



Annexes 

_________________________________________________________________________________ 

_____________________________________________________________________________ 
151 

 

 Aristotelia chilensis nine-cis-epoxycarotenoid dioxygenase (AcNCED) 

 

 

 

 Sequencing results 

Forward: 

TTGGATGTTTTTATCTGAATTAGACTCATTTGAAGACTGGCCAGTCCACTCGCCGCGCCATTCTTT

CCGAGCCTGAACAAGTGAATTTAGAAGCAGGGATGGTGAACAAGAACTTTCTTGGAAGAAAGAC

CCGGTTCGCGTACTTAGCCCTTGCTGAACCGTGGCCTAAAGTGTCAGGTTTTGCCAAAGTTGACA

TCTCAACTGGAGAGGTAAACAAGTACATCTATGGAGACCAAAGGTTTGGTGGTGAGCCTTTGTTT

CTTCCCAGAGACCCCAATTCAGAGATAGAAGATGATGGCTATGTTTTAACTTTTGTTCATGATGA

GAAGGAATGGAAATCAGAGCTGCAA 

Reverse: 

CAGGGGAAACATAGCCATCATCTTCTATCTCTGAATTGGGGTCTCTGGGAAGAAACAAAGGCTCA

CCACCAAACCTTTGGTCTCCATAGATGTACTTGTTTACCTCTCCAGTTGAGATGTCAACTTTGGCA

AAACCTGACACTTTAGGCCACGGTTCAGCAAGGGCTAAGTACGCGAACCGGGTCTTTCTTCCAAG

AAAGTTCTTGTTCACCATCCCTGCTTCTAAATTCACTTGTTCAGGCTCGGAAAGAATGGCGCGGC

GAGTGGACTGGCCAGTCTTCAAATTGAGTCTAATTTCAGATAAAACACTCTTCAAACTCTCGTCA

CATTCGTTGAAAAATGGAGTCA 

 BLAST results 

 

Fig 1. Visualization of AcNCED PCR product. Lane 1-2 

different leaf samples. M:low range ladder (100-2000 bp) 

      M      1       2                      
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 Sequencing results 

Forward: 

GCAGCTGACGTGAGCGTGGTATCACCATTGATATTGCCTTGTGGAAGTTCGAGACCACCAAGTAT

CTACTGCACTGTCATTGATGCTCCTGGGCATCGTGACTTTATCAAGAACATGATTACTGGTACCTC

ACAGGCTGACTGTGCTGTCCTCATTATTGACTCCACCACTGGTGGTTTTGAAGCTGGTATCTCCAA

GGATGGCCAGACCCGTGAGCATGCTTTGCTTGCTTTCACCCTTGGTGTCAAGCAGATGATCTGCT

GCTGCAACAAGATGGATGCCACCACCCCCAAGTACTCCAAGGCCAGGTATGAAGAAATTGTGAA

AGAAGTTTCTTCCTACTTGAAGAAGGTCGGTTACAACCCTGACAAAATCCCCTTTGTGCCTATCTC

TGGATTTGAGGGTGACAACATGATTGAGAGGTCTACCAACCTTGATGGTTTACAAGGGACCC 

Reverse: 

GCATATGATGTCACTCAATCAGAGATAGGCACCAAGTGGGATTTTGTCATGGTTGTAACCCACCT

TCTTCATTAGGAAGAAACTTCCTTCACAATTTCCTCCTACCTAGCCTTGGAATACTTGGGGGTGGT

GGCATCCATCTTGTTGCACAACAAATCATTTGCTTGACACCAAGGGTGAAAACAAGCAAAACATG

CTCACGGGTCTGGCCATCCTTTGAAATACCCACTTCAAAACCACCAGTGGTGGAGTCAATAATGA

GGACAGCACAGTCAGCCTGTGAGGTACCAGTAATCATGTTCTTGATAAAGTCACGATGTCCAGGG

GCATCAATGACAGTGCAGTAGTACTTGGTGGTCTCAAACTTCCACAAGGCAATATCAATGGTAAT

ACCACGCTCACGCTCAGCCTTGAGCTTGTCCAACACCCAGGCAACTTTTAAATGAAAAAAAAATT

TGTCAAAGATGTCTCGTTCCTACGTGAAGAAAGGTTGTGTCCAACGTTCACAATAATCCTATTAG

TTCCCCGATCTGGATTGATAGGTGGAAACAAGGGTTGCAGAGGTCTATTAACCTTGACTGGCAGG

TGGGTTTGAAGT

 Aristotelia chilensis Elongation Factor 1 alpha (AcEF1a) 

Fig 1. Visualization of EF1a PCR product. Lane 1-3 

different leaf samples. M:low range ladder (100-2000 bp) 

  M            1        2       
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Annex 3 

 

Figure Endogenous abscisic acid (ABA) concentration changes in response to two different water 

treatments and with or without fluridone solution application and with or without a subsequent ABA 

solution application. Aristotelia chilensis plants were either Daily Irrigated (DI) or Non-Irrigated 

(NI). A) Young leaves with ABA application; B) Young leaves without ABA application; C) Fully-

expanded leaves with ABA application; and D) Fully-expanded leaves without ABA application. 

Values represent means ± SE (n=3).  

ABA 

ABA 
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Annex 4 

 

Figure. Leaf water potential of Aristotelia chilensis plants grown under two water treatments; Daily-

irrigated (DI) and Non-irrigated (NI). DI plants were irrigated daily at field capacity, meanwhile, NI 

plants were subjected to drought stress. At the 30th day of drought stress, NI plants were irrigated to 

evaluate plant recovery. All values represent averages of three biological replicates ±SE.  
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Annex 5 

Published paper 
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Annex 6 

Physiologia Plantarum (submitted) 

 

 

 


